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Abstract

Background: Insulin resistance is associated with mitochondrial 
dysfunction. Whether mitochondrial transfer using the centrifuga-
tion method has a beneficial effect on insulin resistance in muscles 
has not been reported yet. This study aimed to investigate the effect 
of mitochondrial transfer via centrifugation on insulin resistance in 
C2C12 cells.

Methods: Insulin resistance was induced in C2C12 cells using pal-
mitate. Healthy mitochondria from C2C12 cells were transferred 
into insulin-resistant C2C12 cells using the centrifugation method. 
Glucose uptake was evaluated to confirm the effect of mitochondrial 
transfer on insulin resistance. Whether mitochondrial dysfunction 
was improved was assessed based on changes of mitochondrial con-
tents and function.

Results: Healthy mitochondria were transferred into C2C12 cells 
using the centrifugation method. Mitochondrial transfer improved 
2-deoxy glucose uptake in palmitate-treated C2C12 cells. It enhanced 
mitochondrial function by restoring adenosine triphosphate synthesis. 
Mitochondrial transfer increased the relative level of mitochondrial 
DNA copy number.

Conclusions: Mitochondrial transfer via centrifugation improved in-
sulin resistance in C2C12 cells.

Keywords: Insulin resistance; Mitochondria; Mitochondrial replace-
ment therapy; Type 2 diabetes mellitus

Introduction

Mitochondrial dysfunction is associated with insulin resistance 
[1]. Some studies have shown that improving mitochondrial 
dysfunction is associated with beneficial effects on type 2 dia-
betes mellitus [2, 3]. However, an improvement in mitochon-
drial dysfunction by targeted therapies would be limited since 
mitochondrial dysfunction is caused by complex mechanisms 
[4]. Mitochondrial transplantation might be one of the prom-
ising options for improving mitochondrial dysfunction [5, 6].

There are several ways to transfer mitochondria, includ-
ing direct injection, co-incubation, magnetomitotransfer, cell-
penetrating peptide, and biocompatible polymer [6]. Recently, 
a centrifugation-based method has been reported as a simple 
and rapid way to improve the efficacy of mitochondrial trans-
fer [7]. Mitochondrial transfer using the centrifugation method 
has demonstrated that exogenous mitochondria can be suc-
cessfully delivered into damaged tenocytes to improve tendi-
nopathy [8]. However, whether mitochondrial transfer using 
the centrifugation method has a beneficial effect on insulin 
resistance in muscle cells has not been reported yet. Thus, the 
aim of this study was to investigate the effect of mitochondrial 
transfer on insulin resistance in C2C12 cells.

Materials and Methods

Cell culture

This study was approved by CHA University Institutional Re-
view Board (201803-BR-015-04) and was conducted in com-
pliance with the ethical standards of the responsible institution 
on human subjects as well as with the Helsinki Declaration. 
C2C12 cells derived from mouse skeletal muscles (CRL-1772, 
passage #6) were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM; Hyclone, Logan, UT, USA) high glucose 
supplemented with 10% fetal bovine serum (FBS; Gibco, 
Waltham, MA, USA), 1% penicillin/streptomycin (P/S; Hy-
clone) at 37 °C under a humidified atmosphere containing 5% 
CO2. For differentiation of myoblasts to myotubes, the media 
was replaced with differentiation media containing DMEM 
supplemented with 2% horse serum (Gibco) and 1% P/S and 
continued to incubate for 4 days.
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Induction of insulin resistance

To induce insulin resistance, the differentiated C2C12 myo-
tubes were treated with palmitate (Sigma, Darmstadt, Ger-
many). Palmitate was dissolved in 95 °C heated ethanol to a 
concentration of 100 mM. After filtration, 100 mM palmitate 
was diluted 1:100 with DMEM containing 2% bovine serum 
albumin (BSA; Bio Basic, Markham, Canada) to yield a final 
palmitate concentration of 1 mM. The palmitate-BSA mix-
ture in DMEM was incubated at 37 °C for 2 h to conjugate 
with BSA. And then, C2C12 cells were incubated with 1 mM 
palmitate for 24 h as an in vitro model for insulin resistance.

Preparation of mitochondria

Using differential centrifugation as we previously described, 
mitochondria were isolated from allogeneic C2C12 cells [7]. 
Briefly, 2 × 107 C2C12 cells were suspended in SHE buffer 
((0.25 M sucrose, 20 mM hydroxyethyl piperazine ethane 
sulfonic acid (HEPES) (pH 7.4), 2 mM ethylene glycol 
bis(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), 
and 0.1% defatted BSA) and lysed using a 1 mL syringe. To 
remove cell debris, centrifugation was performed at 1,500 × 
g for 5 min at 4 °C. The supernatant was collected to an-
other tube and centrifuged at 20,000 × g for 10 min at 4 °C 
to remove the cytosol fraction. And then, the mitochondrial 
pellet was suspended in 1.8 mL SHE buffer and centrifuged 
at 20,000 × g for 10 min at 4 °C. The pellet was suspended 
in 1 mL SHE buffer without BSA (respiration buffer) and 
centrifuged at 20,000 × g for 10 min at 4 °C. Finally, the 
pellet was resuspended in 60 µL phosphate-buffered saline 
(PBS) after removing the supernatant and kept on ice until 
measurements were performed. Isolated mitochondria were 
quantified by determining the protein concentration using a 
bicinchoninic acid (BCA) protein assay (Pierce, Rockford, 
IL). All the experiments were performed with freshly isolated 
mitochondria.

Mitochondrial transfer into C2C12 cells

Isolated mitochondria were transferred into the palmitate-
induced insulin resistant C2C12 myotubes by centrifugation 
as we previously described [7]. For transfer of mitochondria, 
cells were suspended in 100 µL of PBS and kept on ice. Mito-
chondria doses (1, 10 µg) refer to the weight of donor cell mi-
tochondria per 1 × 105 C2C12 cells. The prepared mitochon-
dria suspension (in 10 µL of PBS) was added to the tube of 
C2C12 cells suspended in PBS. The mixture was centrifuged 
at 1,500 × g for 5 min at 4 °C and washed twice with PBS. And 
then, C2C12 cells were re-seeded in a six-well plate for further 
experiments.

2-deoxy D-glucose uptake assay

After treatment with palmitate, cells were stimulated with 100 

nM insulin (Eli Lilly Nederland, Indianapolis, IN, USA) for 
30 min. The palmitate-untreated group was used as a negative 
group for comparing insulin-stimulated glucose uptake. Also, 
as a positive control, insulin-sensitizing agent pioglitazone (50 
µM) was used. Accumulated 2-deoxy glucose-6-phosphate in 
C2C12 cells treated with mitochondrial transfer or pioglita-
zone was measured using a glucose uptake assay kit (Abcam, 
Cambridge, UK).

Measurement of adenosine triphosphate (ATP) contents 
and ATP synthesis

Intracellular ATP levels were measured using a CellTiter-Glo 
2.0 assay kit (Promega, Madison, WI, USA). To measure ATP, 
insulin resistance-induced cells by palmitate were seeded in 
opaque-walled 96-well plates after mitochondrial transfer. 
After 24 h, cells were washed with PBS and added 50 µL of 
CellTiter-Glo luminescence test solution and incubated for 
30 min at room temperature. Also, to determine ATP synthesis, 
cells were incubated with adenosine diphosphate for 45 min 
before adding the ATP reagent. Luminescence signals were de-
termined using a luminescence microplate reader.

Real-time polymerase chain reaction

Mitochondrial-encoded gene (COX2) and nuclear-encoded 
gene (Rsp18) expression levels were measured using reverse 
transcription polymerase chain reaction (PCR; Applied Bio-
systems, Foster City, CA, USA). The ratio of COX2 versus 
Rsp18 was used for calculating the relative level of mitochon-
drial DNA (mtDNA) copy number.

Statistical analysis

All statistical analyses were performed using SigmaPlot 14.0 
Software (Systat Software, San Jose, CA, USA). Significant 
differences of investigated parameters between groups were 
evaluated using Student’s t-test or one-way analysis of vari-
ance test followed by Bonferroni post hoc test. Statistical sig-
nificance was defined at P < 0.05.

Results

Effect of mitochondrial transfer on glucose uptake

To evaluate the effect of mitochondrial transfer on insulin re-
sistance induced by palmitate, 2-deoxy glucose (2-DG) up-
take was measured (Fig. 1). The decrease of 2-DG uptake by 
treatment of palmitate was confirmed compared to palmitate-
nontreated group. And 2-DG uptake was improved by mito-
chondrial transfer compared to the palmitate-treated group. 
Additionally, significant improvement was also found in the 
pioglitazone-treated group.
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Effect of mitochondrial transfer on mitochondrial func-
tion and contents

The intracellular ATP content and synthesis activity were de-
creased in the insulin-resistant muscle cells by treatment of 
palmitate (Fig. 2a and Supplementary Material 1, www. jofem.
org). Although ATP content was not changed (Supplementary 
Material 1, www. jofem.org), ATP synthesis was increased by 
mitochondrial transfer at 10 µg (Fig. 2a). Furthermore, mito-
chondrial transfer increased the relative level of mtDNA copy 
number compared to palmitate-treated groups (Fig. 2b).

Discussion

This study demonstrated that mitochondrial transfer to C2C12 
cells treated with palmitate using centrifugation as a mitochon-
dria intracellular delivery method effectively ameliorates in-
sulin resistance. This is the first study to evaluate the efficacy 
of mitochondrial transfer using the centrifugation method in 
mitigating insulin resistance in muscle cells.

Many studies have described a complex bidirectional asso-
ciation between insulin resistance and mitochondrial function. 
Insulin can stimulate mitochondrial activity that can reduce 
hepatic lipid accumulation and enhance insulin sensitivity and 
glucose homeostasis [9]. In addition, mutations of mitochon-
drial DNA can inhibit mitochondrial β-oxidation and glucose 
transporter type 4 (GLUT4) translocation, which can increase 
fatty acid accumulation and induce insulin resistance [10].

Several modes including direct injection, co-incubation, 
magnetomitotransfer, cell-penetrating peptide, biocompatible 
polymer, photothermal nanoblade, and fluidic force micro-
scope have been established to transfer isolated healthy mito-
chondria to recipient cells [6]. The centrifugation method used 
in this study is a simple and quick way to deliver exogenous 
mitochondria into culture cells without further co-incubation. 
It has a high transfer efficiency and reproducibility [7]. This 
strategy is not accompanied by membrane disruption. It has 
no technical requirements like microinjection, photothermal 
nanoblade, or fluidic force microscope. We have previously 
reported that exogenous mitochondria can be successfully 
transferred by centrifugation with protective effects on dam-
aged tenocytes [8]. In this study, although we were unable to 

Figure 1. Effect of mitochondrial transfer on glucose uptake in C2C12 cells. Results are expressed as fold change of mean ± 
standard deviation (n ≥ 3). *P < 0.05 vs. insulin-stimulated group. #P < 0.05 vs. insulin and palmitate treated group. MT: mito-
chondria; Pio: pioglitazone.



Articles © The authors   |   Journal compilation © J Endocrinol Metab and Elmer Press Inc™   |   www.jofem.org210

Effect of Mitochondrial Transfer on IR J Endocrinol Metab. 2024;14(4):207-212

Figure 2. Effects of mitochondrial transfer on mitochondrial function and content. (a) Adenosine triphosphate (ATP) synthesis. 
(b) Relative level of mitochondrial DNA (mtDNA) copy number. Results are expressed as fold change of mean ± standard de-
viation (n ≥ 3). *P < 0.05 vs. insulin-stimulated group. #P < 0.05 vs. insulin and palmitate treated group. MT: mitochondria; Pio: 
pioglitazone.
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directly trace the transferred mitochondria, we could assume 
that mitochondrial transfer into the cells would have been suc-
cessful.

Mitochondrial function is closely linked to ATP content 
and synthesis. Previously, we found that mitochondrial trans-
fer normalized ATP production in human umbilical cord-de-
rived mesenchymal stem cells [7]. In the present study, mi-
tochondrial transfer to insulin-resistant muscle cells led to an 
enhancement in ATP synthesis, which may have improved in-
sulin resistance assessed by 2-DG uptake. However, although 
ATP synthesis was not increased by mitochondrial transfer at 
a dose of 1 µg, insulin resistance was improved. This might be 
because insulin resistance was associated with various mecha-
nisms including GLUT4 translocation, insulin signaling path-
way, oxidative stress, and mitochondrial dynamics. Mitochon-
drial transfer may have a beneficial effect on these mechanisms 
as well, thereby improving insulin resistance. Further research 
is required to evaluate exactly how mitochondrial transfer may 
improve insulin resistance. In addition, mitochondrial transfer 
did not result in an increase in the total intracellular ATP level. 
This might be because insulin-resistant cells might have more 
complex defects of ATP production than other cells. Another 
possibility was that ATP generation is a complex process and 
is associated with various factors, so mitochondrial transfer 
might not restore it completely.

There have been many studies that have tried to treat dia-
betes by restoring the function of damaged mitochondria [11, 
12]. Potential mitochondria-targeting agents such as NAD+ 
booster [13] and oxidative phosphorylation modulators [14] 
might improve insulin resistance through modulation of mi-
tochondrial function. However, it has been difficult to com-
pletely restore dysfunctional mitochondria. Mitochondrial 
transfer is an attractive approach for treating various diseases 
because dysfunctional mitochondria in defective cells could 
be replaced with healthy mitochondria. It has been reported 
to be useful for treating myocardial ischemia-reperfusion in-
jury, acute respiratory distress syndrome, Parkinson’s disease, 
spinal cord injury, liver injury, and acute kidney injury [15-
20]. Treatment with mitochondria isolated from human HepG2 
cells can reduce reactive oxygen species (ROS) and increase 
energy supply in an in vitro Parkinson’s disease model [17]. In 
addition, exogenous mitochondria from HepG2 cells can de-
crease ROS, increase energy supply, and reduce hepatotoxicity 
in in vivo and in vitro models of acetaminophen-induced liver 
injury [19]. Nevertheless, little is known about the association 
between mitochondrial transfer and diabetes. One study has 
reported that mitochondria from human adipose mesenchymal 
stromal cells can be successfully transferred into human islet β 
cells to enhance insulin secretion [21]. As far as we know, this 
is the first study to show that insulin resistance in muscle cells 
can be improved by mitochondrial transfer.

Unfortunately, this study was not conducted in human 
muscle cells. However, the C2C12 cell line has been used ex-
tensively to understand the molecular mechanisms underlying 
the progression of diabetes and obesity [22]. The use of C2C12 
myoblast cell line has been meaningful in pharmaceutical and 
biomedical research due to their expression of GLUT-4 and 
other features that are representative to human skeletal muscle 
cells [23]. Furthermore, in the preclinical stage of pharmaceu-

tical development, the C2C12 myoblast cell line has enabled 
the establishment of the potential safety profile and effective 
dosage range prior to testing of therapeutic agents in vivo by 
using animal models [23]. We believe that the results of this 
study conducted on the C2C12 cell line are likely to be re-
produced in humans. Further studies are needed to evaluate 
whether the results of this study are replicated in human mus-
cular metabolism.

In conclusion, mitochondrial transfer via centrifugation 
improved insulin resistance in muscle cells. Further study is 
warranted to elucidate effects of mitochondrial transfer on in-
sulin resistance in animals or humans.

Supplementary Material

Suppl 1. Effects of mitochondrial transfer on adenosine 
triphosphate (ATP) contents. Results are expressed as fold 
change of mean ± standard deviation (n ≥ 3). *P < 0.05 vs. in-
sulin-stimulated group. MT: mitochondria; Pio: pioglitazone.
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