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Abstract

Background: The relationship between microgravity and parathyroid 
hormone (PTH), a keystone of bone mineral density, remains contro-
versial. Bone loss is a prominent, ongoing issue in spaceflight, and 
PTH has been suggested as a treatment for microgravity-induced os-
teopenia, indicating the importance of this hormone. This systematic 
review and meta-analysis aimed to evaluate the association between 
exposure to microgravity and the production of PTH.

Methods: PubMed, Embase, Scopus, and Google Scholar were searched 
for studies reporting PTH levels during and after exposure to micrograv-
ity. Non-peer-reviewed articles, studies lacking control groups, and ar-
ticles published earlier than 2002 were excluded. Twelve articles from 
2002 to present, with a total of 145 subjects, were identified and the 
standardized mean differences from baseline PTH levels were combined 
in a random effects model. Two-way analysis of variance (ANOVA) 
with Tukey honestly significant difference (HSD) testing on weighted 
mean differences was conducted to obtain 95% confidence intervals.

Results: Compared to baseline measurements, significant changes 
in PTH levels are found during and after microgravity exposure. In-
flight levels significantly decrease (P < 0.01), and post-flight levels 
show increases. Furthermore, there is evidence of an interaction be-
tween experimental condition (real or simulated microgravity) and 
time after removal from microgravity on PTH.

Conclusions: The findings of this systematic review and meta-anal-
ysis suggest that microgravity affects parathyroid gland function dur-
ing and after spaceflight, with decreases in function in-flight and an 
increase at 7 days post-flight. Experimental condition also appears to 
play a role in the recovery timeline of PTH.
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Introduction

Spaceflight grows ever ambitious. As astronauts spend longer 

periods in space with a future goal of a manned flight to Mars, 
it is critical to understand the physiological changes that occur 
in weightless conditions. Loss of bone density during space-
flight is a preeminent issue in aerospace medicine; upon re-
turn to the ground, astronauts are predisposed to fracture under 
the heavier load of Earth’s gravity and bone mineral density 
is recovered slowly if fully recovered at all [1, 2]. Parathyroid 
hormone (PTH) has gained attention in microgravity research 
for its role in bone density, having been used clinically to treat 
osteoporosis [3] and to slow bone loss in rats under simulated 
weightlessness [4].

Secretions of many hormones have been observed to de-
crease during spaceflight and in simulations of micrograv-
ity, suggesting that the human endocrine system responds to 
changes in ambient gravity. However, studies can be sparse 
and report heterogeneous results. Furthermore, several con-
founding variables in the spacecraft environment may alter 
parathyroid function separately from microgravity, such as 
components in the spacecraft itself. For example, iodine is no 
longer used as a water disinfectant in American spacecraft af-
ter observations that iodine contributed to increased thyrotro-
pin (TSH) levels, a marker of hypothyroidism [5].

This indicates a need for a synthesis of microgravity stud-
ies to reduce the effect of confounds in single studies, empha-
sizing recent literature to reflect updates in gravity research. 
Furthermore, the effect of real versus simulated microgravity 
conditions on experimental results has not been thoroughly ex-
plored. This systematic review and meta-analysis gathers stud-
ies from January 1, 2002 to present concerning the effect of 
microgravity on PTH production to elucidate the relationship 
between microgravity exposure, experimental condition, and 
PTH levels.

Physiology in Microgravity

Decades of spaceflight research identify several physiological 
changes that occur in weightless conditions, many with foun-
dations in the endocrine system. Osteopenia, primarily from 
load-bearing bones such as the pelvis and femur [6], is one 
of the most pressing and well-documented issues in space-
flight due to the potential for post-spaceflight complications, 
incurring similar depressed hormone profiles and high risks 
of bone fracture as age-related osteoporosis [7, 8]. Loss of 
skeletal muscle during flight compounds this risk of fracture, 
predisposing astronauts to unsteadiness and weakness on the 
ground [6].
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On top of musculoskeletal changes, an assortment of other 
adaptations also occurs in weightless conditions. Without grav-
ity, body fluids shift from the feet to the head, incurring reduc-
tions in blood volume. This acquired hypovolemia potentiates 
orthostatic hypotension when astronauts return to normal gravity 
[9]. Cephalad fluid shifts also increase intraocular pressure, con-
tributing to long-term vision changes seen in astronauts on ex-
tended spaceflights [10]. Virtually every body system is affected 
by microgravity; for example, immune, cardiovascular, and nerv-
ous systems all show cellular changes during spaceflight, altering 
protein expression and the cell cycle, and incurring functional 
changes in cell adhesion and morphology [11, 12].

As hormones play key regulatory roles in virtually all 
physiological systems, it is critical to understand how glandu-
lar function changes in weightless conditions. Importantly for 
spacefarers, bone density is principally regulated through the 
hormones PTH and calcitonin [4, 8], and skeletal muscle mass 
is maintained in part by the thyroid hormone thyroxine [13]. 
Understanding how endocrine function is affected by micro-
gravity is thus vitally important to understand, with its roles 
in preeminent issues such as bone and muscle loss as well as 
the broad scope of physiological effects seen in weightless-
ness. This swath of changes makes gravitational physiology 
research incredibly important to better understand a novel 
physical environment and to support the human body during 
long-term spaceflight.

Parathyroid Gland Function in Microgravity

PTH levels have been observed to drop during exposure to mi-
crogravity coupled with an increase above pre-flight baseline 
after return to Earth. This reduced hormone secretion during 
spaceflight is paralleled in several other endocrine organs, 
such as in T3, T4, and computed tomography (CT) from the 
thyroid [14-16]. Production of insulin and corticosteroids [8] 
as well as renin [14] from the pancreas, adrenal glands, and 
kidneys, respectively, are also all negatively impacted by ex-
posure to microgravity.

However, multiple factors obfuscate definite conclusions 
about the endocrine system in weightless conditions. Com-
plex interactions between several confounding variables in the 
spaceflight environment obfuscate the effect of microgravity 
alone, such as background radiation or psychological factors 
like isolation. Not only does this complicate literature analysis, 
but also adds technical obstacles to microgravity research by 
making accurate simulations more difficult to achieve. Low 
sample sizes and poor inter-study agreement further obfuscate 
clear trends in study results. These challenges perplex the for-
mation of concrete conclusions regarding endocrine function 
in microgravity.

Recent discourse on thyroid function during spaceflight 
exemplifies these difficulties. For example, a study on Ameri-
can spacecraft found that iodine present in the water contrib-
uted to decreases in thyroid hormone levels [17], leading to 
preliminary suggestions that microgravity does not directly 
influence thyroid function. However, studies conducted on 
non-American spacecraft show a continued prevalence of de-

creased thyroid levels, such as on Kosmos missions [18-20], 
Spacelab [21-23], Euromir [24], or Mir [25] where silver was 
used as a water disinfectant. Furthermore, studies conducted 
on American spacecraft after the replacement of iodine contin-
ue to show decreased in-flight thyroid hormone levels [26-28]. 
Astronauts also show increased thyroid hormone levels imme-
diately post-flight, suggesting a compensatory response after 
an in-flight decrease in thyroid function [24, 25, 29]. Hidden in 
this discourse is also the effect of technological advancement, 
where changes in both spaceflight research techniques and en-
gineering subtly change the results of studies over time, espe-
cially in such a young, highly innovative field as aerospace 
medicine. This discussion illustrates the effect of confounding 
variables, high inter-study variation, and limited sample sizes 
in microgravity research, especially in endocrinological stud-
ies, and how these issues obfuscate clear conclusions. These 
challenges across all microgravity research naturally extend to 
PTH in microgravity, spawning ongoing knowledge gaps re-
garding the parathyroid gland in space. In turn, there is a need 
for a synthesis of modern literature to quantify the effect of 
weightlessness on parathyroid function.

Changes in endocrine function are paralleled by altera-
tions to tissue and gene expression. Recent histological stud-
ies on endocrine cells cultured in microgravity show changes 
in gene expression, cell adhesion, and tissue morphology in a 
wide variety of endocrine tissues [11, 12, 26]. Again using the 
thyroid as an example, cellular changes to the thyroid have 
been suggested as a potential mechanism for microgravity-
associated hypothyroidism. Both carcinoma and benign thy-
roid cells show increased apoptosis and decreased hormone 
production as well as altered protein and gene expression 
profiles and three-dimensional (3D) conglomeration when 
placed in microgravity [30-32]. In turn, there is substantial 
evidence to suggest that microgravity influences thyroid tis-
sue at the cellular level. Similar histological changes have 
been noted in other endocrine glands such as the pancreas, 
including increases in vacuolation as well as islet size and 
number, reflecting reductions in insulin production during 
spaceflight [33]. However, while these structural changes to 
endocrine tissue have been studied fairly extensively in mi-
crogravity, little information is available regarding changes 
to parathyroid tissue. The parathyroid gland may undergo 
similar structural changes in microgravity, but further re-
search is required to clarify the specific effect of micrograv-
ity on parathyroid tissue.

With the prevalence and strong potential for complications 
with microgravity-induced osteopenia, studying CT and PTH 
in microgravity is critical due to their roles as keystones of 
calcium balance. Isolated observations in the literature show 
a similar pattern in CT levels with exposure to microgravity, 
with a drop in CT levels in weightless conditions coupled with 
an increase after exposure. However, there are not enough data 
on CT levels to produce substantive results from a systematic 
review and quantitative analysis. Enough data exist for PTH, 
however, for meaningful meta-analysis. As loss of bone densi-
ty continues to impact astronauts returning from space, synthe-
sizing data on PTH levels during and after flight will elucidate 
the recovery timeline and establish the magnitude of change 
for the parathyroid gland.
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Methods

Literature search

A systematic literature search was performed using Embase, 
Scopus, JAMA Network, and PubMed. Google Scholar was 
used as a secondary search tool to identify grey literature and 
other studies, until 19 July 2022. The bibliographies of manu-
scripts were also screened to obtain additional back-referenced 
material. Search terms used for each database are collected in 
Table 1.

All inclusion and exclusion criteria were chosen a priori. 

To be included, articles must measure levels of PTH in ei-
ther real or simulated microgravity. Articles utilizing thyroid 
cancer cells were excluded, as malignant thyroid cells show 
a different gene expression profile as well as altered aggre-
gation and proliferative behavior in microgravity compared 
to nonmalignant cells [34]. Animal subject studies were 
excluded. Non-English articles were translated and not ex-
cluded. Articles greater than 20 years of age at the time of 
reading were excluded using a minimum year of publication 
of 2002. Studies utilizing both simulated and real micrograv-
ity conditions were included. Studies must also have been 
peer-reviewed. Experimental designs lacking control groups 
or pre-flight measurements of hormone levels were excluded. 

Table 1.  Keywords Used to Search Individual Databases Until July 19, 2022 With Records Identified From Each Source

Database Terms No. of records identified
Embase, Scopus parathyroid* AND (microgravity OR hypogravity OR “low gravity” OR weightless*) Embase: 18; Scopus: 16
PubMed parathyroid* AND (microgravity OR hypogravity OR “low gravity” OR weightless*) (all  

fields)
9

Google Scholar parathyroid AND (microgravity OR hypogravity OR “low gravity” OR weightlessness OR  
weightless)

979

JAMA Network parathyroid AND (microgravity OR hypogravity OR “low gravity” OR weightlessness) 0

Figure 1. Flowchart showing screening and selection process for studies along with numbers of studies excluded at each step.
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Of the initial 1,022 articles retrieved, 12 were kept and ana-
lyzed. Figure 1 depicts the selection process for these studies.

Data extraction

The following data were extracted: author name(s), year of 
publication, whether the microgravity experimental condi-
tions were real or simulated, size of treatment groups, mean 
or median PTH levels and variance in these measurements, 
mean or median calcium levels in serum and/or urine as well 
as variance in these measurements, mean serum vitamin D 
levels as both calcitriol (1,25(OH)2D) and calcifediol (25(OH)
D) and variance, and timepoint of measurement: pre-, in-, or 
post-flight. Post-flight values were binned into categories de-
pending on the time after removal from microgravity: < 24 h 
after recovery (R+0), 24 - 48 h after (R+1), between 2 and 7 
days after (R+2-7), and more than 7 days after (>R+7). Data 
extraction from graphical data was performed using MetaLab 
for MATLAB R2016b [35]. In cases where both levels of in-
tact PTH (iPTH) and mid-molecule PTH are reported, iPTH is 
recorded in line with more modern techniques [36]. Baseline 
hormone measurements were taken as either hormone levels 
measured before microgravity exposure or as measurements 
in control groups.

Table 2 [27, 28, 37-46] shows the characteristics and data 
extracted from the 12 studies.

Analysis

Analytical methods were chosen a priori. To standardize 
measurements across many different units, Cohen’s d was 
calculated for each timepoint in an individual study, as given 
by the formula below [47]. Variances could reasonably be as-
sumed to be equal between timepoints within a single study. 
All extracted data, along with calculated Cohen’s d for each 

study, are available in the Supplementary Materials 1-3 (www.
jofem.org) to this article.

Difference between baseline and outcomed
Pooled standard deviation of baseline and outcome

=

A weighted average of the d statistic (x) was computed 
using sample size to weight studies, as in the formula below. 
Heterogeneous variance among all studies precluded the use of 
inverse variance as a weighting factor.

( )1 i i

i

n d
x

n

i
i=∑ ×

=
∑

Two-way analysis of variance (ANOVA) was then con-
ducted to analyze the effect of experimental condition (i.e., 
real or simulated microgravity) and timepoint on PTH hor-
mone levels. Tukey post hoc testing was then conducted to 
further characterize differences.

Results

Simple main effects analysis identified a significant difference 
between timepoints (P < 0.01) as well as a significant differ-
ence between experimental conditions (P < 0.01). These main 
effects were qualified by an interaction between experimental 
condition and timepoint (P < 0.05). The results are summarized 
in Table 3.

Post hoc testing identified significant differences from 
baseline in in-flight and R+7 PTH levels, as visualized in Fig-
ure 2. No significant differences from baseline were identified 
for R+0, R+1, and R+2-7. >R+7 shows a trend to significant 
increase from baseline (P < 0.1). In-flight PTH data for indi-
vidual studies are depicted in Figure 3, showing the consist-
ency of observed decreases from baseline across all studies. In 
both fixed and random effects models, there is also evidence 
of a decrease by a weighted average of one standard deviation.

Table 2.  Data Extracted for Each of the 12 Studies That Passed the Screening Process, Including Year, Name of First Author, Sam-
ple Size (n), Microgravity Condition (Real Versus Simulated), Time Points Collected, and Databases Where the Article Is Indexed

Ref. Year First author n Real/simulated Timepoints Database
[37] 2022 Linossier 9 Simulated In-flight, R+2-7 Embase, Scopus, Google Scholar
[38] 2015 Smith 7 Real In-flight Scopus, Google Scholar
[39] 2012 Morgan 12 Simulated In-flight, R+2-7 Embase
[27] 2012 Smith 6 Real In-flight, R+0, > R+7 Scopus, PubMed, Google Scholar
[40] 2010 Armbrecht 10 Simulated In-flight, R+1, R+2-7, >R+7 Embase, Scopus
[41] 2007 Zerwekh 10 Simulated In-flight Embase, Scopus, PubMed
[42] 2007 Zwart 7 Simulated In-flight, R+0, R+1, R+2-7, >R+7 Scopus, PubMed
[28] 2005 Smith 6, 16* Real In-flight, R+0, R+2-7, >R+7 Embase, Scopus, Google Scholar
[43] 2005 Rittweger 25 Simulated In-flight, R+1, R+2-7, >R+7 Google Scholar (grey)
[44] 2005 Morukov 9 Real R+1, R+2-7, >R+7 Scopus
[45] 2004 Shackelford 18 Simulated In-flight Embase, Scopus, PubMed
[46] 2003 Smith 8 Simulated In-flight, R+1, R+2-7 Scopus, PubMed

*Smith et al report data from two separate studies, one with a sample size of six and another with 16 subjects.
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There is evidence for differences between experimental 
conditions within timepoints, as seen in Table 4, which summa-
rizes the results of Tukey honestly significant difference (HSD) 
testing for two-way ANOVA. In-flight and >R+7 measurements 
were not significantly different between real and simulated 
conditions. However, there is evidence for significant differ-
ences between experimental conditions for other post-flight 
timepoints. Real microgravity shows significant increases from 
baseline at R+0, R+1, and R+2-7, displayed in Figure 4. How-
ever, simulated microgravity shows significant decreases from 
baseline at these same timepoints, as visualized in Figure 5. 
These opposite findings may explain the apparent lack of differ-
ence at these timepoints when both conditions are incorporated.

Discussion

Consistent throughout the data are significant increases be-
tween in-flight and post-recovery values, suggesting a com-

pensatory rebound in PTH levels after removal from micro-
gravity. Notably, there is a significant difference between PTH 
levels in-flight and within a few hours of recovery. This re-
bound pattern is paralleled in studies on other hormones. This 
provides evidence that results from in-flight and R+0 measure-
ments should not be conflated.

All studies save for two reported a statistically significant 
decrease in PTH while in flight. However, the magnitude of 
this difference appears heterogeneous between studies, even 
when normalized to a statistic like Cohen’s d. This hetero-
geneity is characteristic of both experimental conditions. Be-
tween-study variability should be considered when attempt-
ing to pinpoint an average effect size of microgravity. Some 
of this may be due to the newness of gravitational physiology, 
where measurement methods and protocols may not be stand-
ardized.

The recovery timeline for PTH is difficult to establish 
in this meta-analysis, as post-flight results appear hetero-
geneous between studies. Furthermore, results appear to be 

Table 3.  Summary of Results From Two-Way ANOVA for a Relationship Between PTH Level and Timepoint, Experimental Condition, 
and the Combination of These Factors

Source Sum of squares DF Mean square F P
Time 202.825 4 50.706 92.602 < 0.01
Condition 51.013 1 51.013 93.162 < 0.01
Time × condition 40.502 4 10.125 18.491 < 0.05
Residual 215.197 144 1.4944

ANOVA: analysis of variance; DF: degrees of freedom; PTH: parathyroid hormone.

Figure 2. Tukey HSD plot of confidence intervals, inclusive of all studies. Red points indicate outlier data. HSD: honestly signifi-
cant difference.
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dependent on experimental conditions: studies in real micro-
gravity show a significant increase in hormone levels post-
flight, whereas simulated studies show decreases post-flight. 
Continued study examining microgravity research techniques 
is needed to clarify the effect of different protocols on experi-
mental results.

Overall, these findings for PTH echo what has been ob-
served in other hormones. For example, in the thyroid, T3 and 
T4 [5, 33, 48] as well as CT levels [28, 49, 50] have been ob-
served to decrease while in-flight with a post-flight rebound. 
These reduced hormone levels match physical changes in thy-
roid tissue morphology, such as increases in follicle size, cell 

membrane composition [51], changes in cytoskeletal elements 
regulating the 3D structure and cell-cell interactions [34], as 
well as increased expression of apoptotic proteins [31]. Thy-
roid carcinoma cells reduce their T3 and T4 production as they 
undergo greater rates of apoptosis [31, 32], and C cells that 
produce CT have been observed to become less active in space 
[52, 53] and to decrease in number while in-flight [50]. De-
creased T3 and T4 levels also correlate with changes in tissue 
morphology. An in-depth study of parathyroid tissue is forth-
coming and may follow this same pattern seen in many other 
endocrine tissues. Still, there is only a relatively small body of 
research on in-flight hormone production in human subjects, 

Figure 3. Forest plot for in-flight levels of PTH, inclusive of all studies. Squares with lines show 95% confidence intervals for a single 
study. Diamonds at the bottom indicate weighted average confidence interval computed from all studies. PTH: parathyroid hormone.

Table 4.  Tukey HSD Testing With 95% Confidence Intervals for Each Timepoint, Separated by Experimental Condition

Time Condition n Mean Standard error 95% confidence interval
In-flight Real 19 -1.5195 0.1698 -1.8532 to -1.1857

Simulated 99 -1.4803 0.07437 -1.6265 to -1.3341
R+0* Real 28 0.1207 0.1398 -0.1542 to 0.3956

Simulated 8 -1.1400 0.2616 -1.6544 to -0.6256
R+1* Real 25 1.1176 0.1480 0.8266 to 1.4086

Simulated 50 -0.7226 0.1046 -0.9283 to -0.5169
R+2-7* Real 31 0.8897 0.1329 0.6284 to 1.1510

Simulated 71 -0.3001 0.08782 -0.4728 to -0.1275
>R+7 Real 37 0.8681 0.1217 0.6289 to 1.1073

Simulated 35 0.6857 0.1251 0.4398 to 0.9316

*Timepoints differ significantly (P < 0.05) by experimental condition. HSD: honestly significant difference.
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particularly in real microgravity conditions. Confounding fac-
tors also hinder the ability to draw conclusions; for example, 
there is evidence to suggest that the loss of C cells is at least 
in part due to confinement stress and not microgravity [54]. 
Still, the evidence that PTH production is truly reduced in mi-

crogravity is compelling. Future research will help clarify the 
magnitude of change in parathyroid function in microgravity, 
the effects on gene expression and tissue morphology, and the 
effect of confounding variables on observed changes in hor-
mone secretion.

Figure 4. Tukey HSD plot showing 95% confidence intervals for real microgravity studies for each timepoint. Red points indicate 
outlier data. HSD: honestly significant difference.

Figure 5. Tukey HSD plot showing 95% confidence intervals for simulated microgravity studies for each timepoint. Red points 
indicate outlier data. HSD: honestly significant difference.
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Relationships with calcium and vitamin D

Calcium

Exposure to microgravity is correlated with increased rates of 
bone resorption and elevated calcium excretion in urine, pro-
ducing a negative calcium balance that reduces bone density 
over time [1]. Naturally, almost all studies included in this 
analysis report a significant increase in urinary calcium during 
flight. As calcium is a major regulator of PTH levels, it would 
be expected that bone demineralization during spaceflight is 
correlated with decreases in PTH levels [7]. Again, data from 
the included studies concur with this expectation, where in-
creases in excreted calcium occur at the same time as the ob-
served drop in PTH. A recovery timeline for urinary calcium 
is difficult to define due to low data availability, though many 
studies reporting post-flight levels appear to return to baseline 
by R+2-7.

As for serum calcium, data from the included studies are 
conflicted; a majority report no significant difference during 
flight while others report significant albeit modest increases, 
and two studies find slight decreases. A post-flight recovery 
timeline for serum calcium is unclear, but there is some evi-
dence that serum calcium is depressed after spaceflight. Very 
limited data are available for ionized calcium, as only three 
of the 12 studies initially screened report any data on this 
factor.

However, separating real and simulated microgravity 
conditions suggests differences between the two regarding 
calcium levels. No studies conducted in real microgravity re-
port significant changes in serum calcium, different from the 
near-unanimous in-flight drop in PTH seen across both types 
of experimental conditions. Real microgravity studies also ap-
pear to produce small magnitudes of negative change in se-
rum calcium as opposed to the positive change that trends to 
significance in simulated studies. Both conditions appear to 
affect urinary calcium similarly, with all studies reporting a 
significant increase in urinary calcium and a similar magnitude 
of change (Table 5).

Vitamin D

PTH stimulates the formation of calcitriol, the active form 
of vitamin D, facilitating the absorption of calcium from the 
intestines and increasing bone turnover to raise bone density 

[7]. In turn, data from five of the eight studies reporting cal-
citriol levels show reductions in calcitriol during flight, cor-
related with the in-flight drop in PTH levels. These decreases 
are present in both real and simulated microgravity. Reduced 
calcitriol prevents the effective absorption of calcium into the 
blood, contributing to negative calcium balance in the body 
and furthering bone demineralization in weightless conditions.

There is scattered evidence of a post-flight rebound in cal-
citriol levels, but the majority of studies report no significant 
difference from baseline after exposure to microgravity. As 
with calcium, there is a lack of data in post-flight vitamin D 
data to establish a clear timeline for recovery.

There is possibly an effect of experimental condition on 
calcitriol levels. Subjects exposed to real microgravity show 
no significant difference from baseline calcitriol levels during 
flight, reporting a far lower magnitude change in calcitriol lev-
els than in simulation. While more data are required to clarify 
these distinctions, this may represent emerging evidence that 
real and simulated microgravity have differential effects on 
calcitriol levels.

Calcifediol, on the other hand, does not appear to change 
significantly during or after spaceflight: only one study reports 
a change in calcifediol levels at any timepoint. This may be due 
to vitamin D supplementation in both real and simulated con-
ditions, as is common in both microgravity research subjects 
and astronauts outside of experiments [7]. Still, there seems to 
be a difference between real and simulated microgravity in cal-
cifediol levels: real microgravity seems to decrease calcifediol, 
while simulated conditions appear to increase it. This conclu-
sion is hindered by high intra-study measurements of variance 
and relatively small magnitudes of change, however.

The observed changes to calcitriol imply differences be-
tween real and simulated weightlessness, either as a result of 
experimental technique or a true physical difference between 
the two conditions. As calcifediol plays a major role in recov-
ering bone mineral density, more data are needed on calcitriol 
in the context of decreased PTH levels to obtain a clearer pic-
ture of bone mineral density during spaceflight (Table 6).

Analysis of bias and limitations

A possible source of bias is the small sample sizes of most 
individual studies. Furthermore, the selection of astronauts for 
spaceflight introduces nonrandom sampling error in real mi-
crogravity conditions. This also hinders the generalization of 
these results to a broader population. Reporting issues such 

Table 5.  Summary Data for In-Flight Serum and Urinary Calcium Levels

Serum calcium Urinary calcium
Cond. (n) # significant In-flight x Cond. (n) # significant In-flight x
All (11) 3 0.300 All (6) 6 0.803
Real (3) 0 -0.460 Real (2) 2 0.797
Simulated (8) 3 0.589 Simulated (4) 4 0.806

Results are included from all studies as well as separated by microgravity condition. Data include the weighted average x of Cohen’s d and number 
of studies reporting significant change. Ionized calcium is not included due to a lack of data.
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as unreported mean differences and measures of variance led 
to the exclusion of otherwise suitable studies, reducing the 
amount of available data. Searching and screening of articles 
were conducted carefully and all articles that met inclusion cri-
teria were able to be accessed. None were unable to be located 
or inaccessible behind a paywall.

For in-flight changes in PTH levels, there was a trend to 
significance for evidence of publication bias (Egger’s test in-
tercept = -3.4695; P = 0.07). Visual analysis of the funnel plot 
for all PTH studies, shown in Figure 6, reveals an asymmetri-
cal distribution. In turn, there is potential for reporting bias in 
this meta-analysis.

Allowing the inclusion of studies in both real and simu-
lated microgravity strengthened the power of the statistical 
tests but possibly introduced heterogeneity. Substudies on 
real and simulated conditions explore this and indicate that 
this could potentially bias conclusions from post-flight meas-
urements, especially when summarizing studies from both 
conditions.

Future Research

A major challenge in gravitational research is isolating the 
effect of microgravity from a ubiquity of possible confounds. 
Confinement stress, loss of privacy, and disruption of social 
and familial ties are a few factors that contribute to physi-
ological stress in space [41, 45]. In real microgravity, back-
ground radiation and loss of circadian cues are additional 
factors that may play a role in decreased endocrine function 
[55, 56]. Another example is common plastics: bisphenol A 
and phthalates, two well-known endocrine disruptors, have 
been shown to alter the function and tissue of the parathyroid 
gland and contribute to tumor formation, hinting at effects 
on gene expression [57]. These plastics have been known 
to leach and contaminate spacecraft components [58]. Also 
common in astronauts is a hypocaloric diet and negative en-
ergy balance [59], which may further reduce PTH levels dur-
ing flight [60].

Table 6.  Summary Data for In-Flight Calcifediol and Calcitriol Levels

Calcifediol Calcitriol
Cond. (n) # significant In-flight x Cond. (n) # significant In-flight x
All (8) 1 0.411 All (9) 6 -0.960
Real (4) 0 -0.313 Real (4) 1 -0.208
Simulated (4) 1 0.738 Simulated (5) 5 -1.220

Results are included from all studies as well as separated by microgravity condition. Data include the weighted average x of Cohen’s d and number 
of studies reporting significant change.

Figure 6. Funnel plot with standard error of studies on the y-axis plotted against standardized mean difference on the x-axis. 
Yellow circles represent single studies.
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Bone loss is also subject to many confounding factors. For 
example, as opposed to reductions in PTH, lack of UV light 
on spacecraft may contribute to osteopenia [61]. Other studies 
find evidence that confinement stress negatively impacts cal-
citonin production, further reducing bone density [54]. Thus, 
many factors affect bone density that may exacerbate the effect 
of reduced PTH. With the ubiquity of potential confounds that 
remain unexplored, identifying and exploring these confounds 
is critical to isolate the effect of microgravity on parathyroid 
function.

The difference between real and simulated micrograv-
ity has not been thoroughly explored in endocrine literature. 
There is evidence that experimental condition affects the re-
covery timeline for PTH and may provide evidence that the ex-
perimental setting is yet another of many possible confounds 
affecting gravity research. Corroborating these differences ap-
pears to be the trends in vitamin D and calcium, which seem to 
change differently based on the experimental condition. One 
such example is how serum calcium appears to change less in 
real microgravity than in simulated microgravity, though both 
real and simulated conditions produce similar magnitudes of 
change in PTH. As the parathyroid gland is regulated by se-
rum calcium, this may suggest that real microgravity impacts 
parathyroid function itself. Still, several technical obstacles 
such as low sample sizes and discrepancies between research 
techniques must be closely analyzed to better define conclu-
sions regarding PTH and other markers of bone formation in 
microgravity.

This analysis provides evidence to support the hypoth-
esis that microgravity exposure affects parathyroid gland 
function and raises new questions in regard to the effect of 
experimental condition. The implications of these issues af-
fect not just the results of endocrine research, but all research 
exploring the effects of weightless conditions and should be 
addressed. Continuing to understand the effect of gravity on 
physiology is critical to preserving astronaut health; as the 
goals of aerospace medicine move farther into space, ensur-
ing the safety of astronauts both during and after long-dura-
tion spaceflight is critical for manned spaceflight to continue 
pressing forward.

Supplementary Material

Suppl 1. PTH Data.
Suppl 2. Calcium Data.
Suppl 3. Vitamin D Data.
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