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Abstract

Background: Gestational diabetes mellitus (GDM) is one of the most 
common pregnancy complications and has a rising prevalence world-
wide. Environmental and genetic factors contribute to GDM risk. De-
scribing familial cases of GDM can help identify the disease’s genetic 
components.

Methods: Here, we report the case of an Emirati female patient af-
fected with early GDM and familial history of diabetes with a sig-
nificant level of insulin resistance. As a first step, we investigated the 
GCK and HNF1A gene sequences by direct sequencing and then per-
formed a clinical exome sequencing (CES) of the patient’s genomic 
DNA covering 6,670 genes.

Results: Our findings showed the absence of any pathogenic vari-
ants in the GCK and HNF1A gene sequences. In addition, the CES 
excluded all maturity-onset diabetes of the young (MODY)-related 
genes. However, two rare homozygous variants in the insulin recep-
tor substrate 1 (IRS1) gene were identified: p.Pro948Leu (gnomAD 
minor allele frequency (MAF) = 7.5 × 10-5) and p.Arg1221Cys 
(gnomAD MAF = 5.6 × 10-5). These variants were absent in a set 
of healthy Emirati individuals. Both variants are highly conserved 
among mammalians but have never previously been reported among 
the same haplotype or individual. p.Pro948Leu and p.Arg1221Cys 
are localized close to two important functional phosphorylation sites 
recognized by PI3K (hTyr941) and SHP2 (hTyr1229), respectively. 
Moreover, the independent and combined effect of the two variants 
on protein stability was predicted to be destabilizing.

Conclusion: Our investigation emphasized the role of downstream 

regulators of insulin signaling in GDM pathophysiology and identi-
fied IRS1 as a candidate gene to explain chronic insulin resistance. 
In addition, the patient showed significant health improvement after 
lifestyle modifications and oral antidiabetic administration, even after 
withdrawing insulin injections.

Keywords: Gestational diabetes mellitus; Clinical exome sequenc-
ing; Sanger sequencing; IRS1 gene; Insulin resistance

Introduction

Gestational diabetes mellitus (GDM) is defined as any degree 
of glucose intolerance first diagnosed during pregnancy. Many, 
if not most, cases of GDM represent preexisting diabetes that 
is only discovered during pregnancy [1]. With the increasing 
prevalence of obesity and diabetes, more type 2 diabetes mel-
litus (T2DM) is diagnosed in women of reproductive age and 
early pregnancy [2]. So, it is reasonable to test women with 
risk factors for T2DM early in pregnancy and, better yet, be-
fore conception [3, 4].

The global estimate of hyperglycemia in pregnancy in 
2021 was around 21.1 million (16.7%) live birth cases. Around 
80.3% of these hyperglycemic cases were due to GDM, while 
10.6% were because of pre-pregnancy diabetes and 9.1% were 
the results of other types of diabetes detected during the preg-
nancy. GDM affects one in eight births worldwide but mostly 
in low- and middle-income countries where maternal care ac-
cess is limited [5].

During a normal healthy pregnancy, the maternal body 
goes through major metabolic changes to support the fetus’s 
growth. During early gestation, from week 11 to week 16, 
insulin sensitivity increases, promoting glucose uptake and 
storage for the upcoming increase in energy demand during 
later gestation. As pregnancy progresses, hepatic gluconeo-
genesis increases by 30%, and glucose sensitivity decreases 
by 50-60% [6]. The reason for the elevated gestational glucose 
is that it is the main source of fuel for the fetus and the pla-
centa. Hence, placental glucose transport is mediated by glu-
cose transporter 1 (GLUT1) via passive diffusion. To maintain 
euglycemia, β cells undergo hyperplasia and hypertrophy and 
increase insulin secretion by 2-3 fold [7, 8]. Most (about 80%) 
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GDM cases present as β-cell dysfunction on a background of 
chronic insulin resistance, to which insulin resistance of preg-
nancy is added [9]. Therefore, overlapping etiologies between 
the different forms of diabetes generated much debate, and it is 
not excluded [9, 10].

GDM is a heterogeneous disorder influenced by various 
environmental, genetic, and epigenetic factors. Multiple obser-
vations point to the genetic predisposition of GDM, including 
clustering of GDM within families with a history of diabetes, 
the higher recurrence rate in subsequent pregnancies, and risk 
rate disparency among different ethnic groups [11]. Based on 
the suggestion that T2DM and GDM share a common genetic 
background, many genetic studies attempted to investigate 
variants and genes that confer a high risk of developing T2DM 
with GDM. The largest group of loci are in genes related to 
insulin secretion, such as TCF7L2, GCK, KCNJ11, CDKAL1, 
IGF2BP2, and MTNR1B, all of which are also associated with 
T2DM [12]. Other genes studied concerning GDM have been 
categorized into insulin and insulin signaling genes, lipid and 
glucose metabolism genes, maturity-onset diabetes of the 
young (MODY) genes, and other genes [13].

In the present study, an Emirati woman with diabetes melli-
tus was diagnosed during her first pregnancy at the age of about 
23 years. She had a similar history of diabetes development in her 
mother and sisters. The patient was examined genetically using 
direct and clinical exome sequencing (CES). Two rare variants 
in the insulin receptor substrate 1 (IRS1) genes were identified 
(c.2843C>T, p.Pro948Leu, g.227660612G>A, rs370373307 and 
c.3661C>T, p.Arg1221Cys, g.227659794G>A, rs754239320).

Materials and Methods

This was a case study carried out by the Department of Applied 
Biology (University of Sharjah) in association with the Saudi 
German Hospital. The consenting recruited patient was clinical-
ly evaluated, and the molecular screening was done initially by 
candidate genes mutational sequencing using Sanger sequenc-
ing. Since none of the identified variants showed clinical signifi-
cance, CES was performed. After filtration and analysis, control 
subjects were screened for the CES-identified variants, followed 
by in silico analysis (Fig. 1). All experimental procedures used 
in this study were approved by the University of Sharjah Re-
search Ethics Committee (No. REC-15-11-P004) and performed 
in accordance with the relevant guidelines and regulations.

Patients

Our patient is a 33-year-old female. She has had diabetes mel-
litus for 15 years. She was diagnosed with diabetes early, at 
6 weeks of gestation in her first pregnancy, at the age of 18 
years. This was discovered during early pregnancy medical 
checkups with no symptoms referring to diabetes. Diabetes 
was controlled by diet and physical activity together with met-
formin. The patient became pregnant again 1 year after the de-
livery of her first baby with the same management of diabetes. 
According to her, her blood glucose usually returned to normal 

during a postpartum hospital stay for a few days, but she never 
checked after that, whether after the first or second delivery. 
Her third pregnancy was 3 years after her second pregnancy, 
during which she needed insulin and metformin for glyce-
mic control. Since her third pregnancy, she has had persistent 
diabetes and has been using insulin analogues at different 
regimens and types. She did not benefit from sulphonylurea 

Figure 1. Summary of the followed research design.
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gliclazide. She reports better control when using a sitagliptin-
metformin combination in a dose of 50/1,000 mg twice daily, 
but she never stopped insulin. In her fourth pregnancy, her 
blood glucose level was controlled by a healthy lifestyle and 
metformin, but insulin was added in the third trimester. Since 
her fourth delivery, she has been using insulin analogues, both 
long- and short-acting (basal-bolus), with at least three injec-
tions per day without oral antidiabetic medication.

This patient was never compliant with diet or exercise except 
during her pregnancy periods; otherwise, she has a completely 
sedentary lifestyle with heavy carbohydrates and fast-food 
meals together with sugar-laden desserts. Clinically she has a 
body mass index (BMI) of 32.3 kg/m2 and a wide waist-hip ratio 
of 0.95 (as per WHO definition). She had goiter, a blood pres-
sure of 140/100 mm Hg, and a heart rate of 103 bpm. She does 
not have acanthosis or pseudoacanthosis nigricans. Funduscopy 
revealed early non-proliferative diabetic retinopathy (NPDR). 
In addition, serological investigations reveal that our patient is 
negative for glutamic acid decarboxylase antibodies (< 5 IU/mL 
(Ref. < 10)), islet cell antibodies, and insulin antibodies (1.32 
U/mL (Ref. < 12)). On the other hand, insulin resistance was 
assessed for the patient by calculating the Homeostatic Model 
Assessment of Insulin Resistance (HOMA-IR) value using the 
patient’s first biochemical investigation (fasting insulin, 35.47 
pmol/L; fasting plasma glucose, 308.01 mg/day). The HOMA-
IR value of 4.5 showed significant insulin resistance.

This patient has a similar family history in her mother and 
two sisters, who were diagnosed with diabetes in their first 
pregnancy. Neither her father nor her brother has been diag-
nosed with diabetes (Fig. 2a).

Genetic screening

After informed consent was obtained, a blood sample was 
collected from the patient’s peripheral veins. Genomic DNA 
was extracted from the blood samples using the QIAamp DNA 
Blood Mini Kit (Qiagen, Germany). The extracted DNA was 
quantified using NanoDrop™ One Microvolume UV-Vis Spec-
trophotometer (Thermo Scientific™, Massachusetts, USA).

The coding exons and their flanking intron-exon regions 
of GCK (NG_008847.2) and HNF1A (NG_011731.2) genes 
were screened for mutations by Sanger sequencing. First, spe-
cific primers were designed using Primer3web version 4.1.0 
[14] (Supplementary Material 1, www.jofem.org). Polymerase 
chain reactions (PCRs) were performed using Promega’s PCR 
Master Mix, 2 × (Promega Corporation, Wisconsin, USA). 
The final PCR reaction volume of 50 µL contained 50 ng of 
genomic DNA. The PCR conditions were as follows: initial 
denaturation at 95 °C for 3 min; 40 cycles of 94 °C for 30 
s, 54 - 61 °C for 30 s (depending on each primer pair’s op-
timization), and 72 °C for 45 s; and final extension at 72 °C 
for 5 min. The amplified amplicons were purified using either 
ExoSAP-IT™ PCR Product Cleanup Reagent (Thermo Sci-
entific™, Massachusetts, USA) or QIAquick Gel Extraction 
Kit (Qiagen, Germany). Then, the sequencing was performed 
using a BigDye Terminator v3.1 Cycle Sequencing Kit (Ap-
plied Biosystem, Thermo Scientific™, Massachusetts, USA). 
As recommended by the protocol, the ethanol/EDTA/sodium 

acetate precipitation method was used to purify the sequenc-
ing reaction products before running the capillary analysis in 
Applied Biosystem’s Genetic Analyzer 3500 (Thermo Scien-
tific™, Massachusetts, USA). The resulting sequences were 
aligned with the human reference sequences of GCK and HN-
F1A by the Basic Local Alignment Search Tool (BLAST).

CES

CES was performed on the patient’s DNA using MedGenome 
Clinical Exome V4 and Illumina technology covering 6,670 
clinically related genes (about 30 Mb) with known associations 
to inherited diseases. The protocol was conducted according to 
the manufacturer’s instructions. In brief, the library prepara-
tion is done by genomic DNA fragmentation and adding adap-
tors containing sequencing binding sites, indexes, and regions 
complementary to the flow cell’s oligos. Then, the library was 
enriched by hybridizing biotinylated probes to targeted regions 
and sequenced on HiSeq 2000 sequencing system (Illumina 
Inc., California, USA). Sequences were aligned to the genome 
version hg19/GRCh37 using BWA-MEM. Realignment and 
recalibration were performed using GATK-lite (V2.3-9).

The annotated variants from the CES data were filtered 
considering the following parameters: new variants and vari-
ants with frequencies lower than 0.01 in ExAC Browser, 1000 
Genomes Project, and dbSNP retained. All variants with cov-
erage greater than 20 were analyzed. A special focus was given 
to a list of 133 genes related to diabetes, glucose metabolism, 
and the insulin pathway [15]. In addition, the functional im-
pacts of the selected coding variants were predicted using the 
following tools: Sorting Intolerant From Tolerant (SIFT) [16], 
Protein Variation Effect Analyzer (PROVEAN) [17], and Pol-
ymorphism Phenotyping v2 (PolyPhen-2) [18].

The selected variants were confirmed by direct sequenc-
ing by the following primers: Pro948Leu-F: 5′ TTGGGAGTG 
ATCAGTCTGGC 3′, p.Pro948Leu-R: 5′ CTGACGGGGACA 
ACTCATCT 3′, Arg1221Cys-F: 5′ GGGGTTTGGAGAATG-
GTCTT 3′, and Arg1221Cys-R: 5′ GCAGAGGCGAAGAA-
CAGAAT 3′. In addition, 42 unrelated non-diabetic healthy 
subjects from the UAE population were screened for candidate 
mutations.

Sequence analysis and silico predictions

Multiple sequence alignment

The human IRS1 protein sequence was aligned with ortholo-
gous mammalian sequences to evaluate the conservation of 
mutated residues. Sequences were retrieved through the NCBI 
database, and multiple sequence alignment was performed us-
ing the Clustal Omega program available at the EBI server.

Protein modelling: model of the full-length IRS1

As the full-length structure of IRS1 is not experimentally de-
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termined, the FASTA sequence of human IRS1 (UniProt ID: 
P35568) was downloaded from the UniProt database [19]. 
The structure model of wild type human IRS1 was predicted 
through the I-TASSER server using the threading method [20, 
21]. Based on the scoring functions, the best model was select-
ed. A scoring function (C-score) based on the relative cluster-
ing structural density and the consensus significance score of 
multiple threading templates was used to estimate the accuracy 

of the I-TASSER predictions. The stereochemical quality of 
the selected model generated was assessed using QMEAN [22, 
23] and ProSA webserver [24, 25].

Effect of mutation on protein stability

The predicted wild type protein structure was used to see the 

Figure 2. Pedigree and electropherograms of the index patient. (a) Pedigree of the family of the studied patient with GDM. Arrow 
is the index patient. (b) Electropherograms of the homozygous mutant index patient with c.2843C>T variant. (c) The IRS1 ho-
mozygous wild type individual missing the c.2843C>T variant. (d) The homozygous mutant index patient with c.3661C>T variant. 
(e) IRS1 homozygous wild type individual missing the c.3661C>T variant. Arrow is the position of the variants.
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effect of the two missense mutations found in the clinical 
study p.Pro948Leu and p.Arg1221Cys on protein stability us-
ing PrempPS [26] and MAESTRO web servers [27]. PremPS 
evaluates the effects of single mutations on protein stability 
by calculating the quantitative changes in unfolding Gibbs 
free energy, while MAESTRO provides predicted ΔΔG val-
ues along with a corresponding prediction quality measure for 
multiple mutations. The predictions are based on the protein 
structure for both servers.

Results

Direct Sanger sequencing was performed on the 10 exonic 
sequences of the GCK and HNF1A genes. No variants were 
found in the GCK gene. On the other hand, screening the HN-
F1A gene sequences revealed six variants: three missenses and 
three synonymous variants (Table 1) [28-36].

The three homozygous synonymous variants are 
p.Leu17=, p.Leu459=, and p.Val540= (ENST00000400024.6). 
Only one heterozygous missense variant (p.Ile27Leu, at po-
sition g.121416650A>C of exon 1) was detected. The other 
two missense variants are homozygous, p.Ser487Asn and 
p.Arg503His (ENST00000400024.6). All HNF1A variants are 
reported as benign by the ClinVar database.

The CES data from the patient yielded a total of 162,654 
variations. These were filtered to keep only non-synonymous 
variants in coding regions with frequencies lower than 0.01 
in dbSNP, ExAC Browser, and gnomAD and associated with 
diabetes, insulin pathway, and glucose metabolism. Also, the 
bioinformatics tools PolyPhen-2, PROVEAN, and SIFT were 
used to predict the pathogenicity of the remaining variants. 
As a result, the patient was shown to harbor two homozygous 
variants in the IRS1 (NG_015830.1) gene, p.Pro948Leu (c. 
2843C>T, g.227660612G>A, rs370373307) and p.Arg1221Cys 
(c.3661C>T, g.227659794G>A, rs754239320) (Fig. 2b-e).

To validate these findings, Sanger sequencing was per-
formed on the patient using our own designed primers span-

ning the regions containing the variants. We confirmed the 
presence of the two homozygous mutant genotypes in the pa-
tient. Furthermore, the mutant alleles of the p.Pro948Leu and 
p.Arg1221Cys variants were absent in 42 non-diabetic individ-
uals. According to gnomAD (V2.1.1), both variants are very 
rare, with respective frequencies of 7.5 × 10-5 (19/251,030) and 
5.6 × 10-5 (14/248,810). The variant p.Arg1221Cys is never 
found homozygous. However, the p.Pro948Leu was reported 
homozygous only once in a Latino female. The frequencies of 
p.Pro948Leu and p.Arg1221Cys among the south Asian popu-
lation are 3.9 × 10-4 and 4.5 × 10-4, respectively. Although they 
are linked to the same gene, the two mutant alleles have never 
previously been described in the same individual (Table 2).

Multiple sequence alignment shows that the residues 
Pro948 and Arg1221 are conserved in multiple species (Fig. 
3). The wild type protein structure of IRS1, as shown in Sup-
plementary Material 2 (www.jofem.org), was selected with a 
C-score of -1.03 and a TM score of 0.58, which indicates a 
model of correct topology. The selected model was submit-
ted to the PremPS web server, and non-covalent interactions 
between the mutated site and its adjacent residues in the wild 
type and mutant structure were predicted (Supplementary Ma-
terial 2, www.jofem.org). ΔΔG (kcal/mol) predicted unfolding 
free energy change induced by a single mutation. The sign of 

Table 1.  Description of HNF1A Variants Detected in the Index Patient

RefSNP number Position in genomic DNA Position in CDS Position in protein Global MAF ClinVard References
rs1169289 Chr12:g.121416622C>G c.51C>G p.Leu17= G = 0.4285a

G = 0.4645b
Benign [28]

rs2259820 Chr12:g.121435342C>T c.1375C>T p.Leu459= T = 0.3167a

T = 0.3302b
Benign [28, 29]

rs2259816 Chr12:g.121435587G>T c.1620G>Tc p.Val540=c T = 0.3588a

T = 0.3845b
Benign [30, 31]

rs1169288 Chr12:g.121416650A>C c.79A>C p.Ile27Leu C = 0.2985a

C = 0.3479b
Benign [32-34]

rs2464196 Chr12:g.121435427G>A c.1460G>A p.Ser487Asn A = 0.3177a

A = 0.3296b
Benign [28, 35]

rs2464195 Chr12:g.121435475G>A c.1508G>Ac p.Arg503Hisc A = 0.3596a

A = 0.3800b
Benign [36]

aMAF of the global population from 1000 Genomes Study. bMAF of the global population from gnomAD. cThe positions are in the transcript 
ENST00000400024.6. dClinVar interpretation and clinical significance for the phenotype of maturity-onset diabetes of the young type 3. CDS: coding 
DNA sequence; MAF: minor allele frequency.

Table 2.  The Co-Occurrence of the Two Variants p.Pro948Leu 
(rs370373307) and p.Arg1221Cys (rs754239320) in the Same 
Haplotype

rs370373307 G>A
MAF = 0.00007569

G A
rs754239320 4G>A
MAF = 0.00005627

G 248,813 19
A 14 0

The estimated probability that these two variants occur together among 
the same individual is equal to 0%. Adapted from gnomAD v2.1.1. 
MAF: minor allele frequency.
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the predicted score depends on the tool selected. PremPs uses 
positive signs to indicate destabilizing mutations and negative 
signs for stabilizing mutations, while MAESTRO uses oppo-
site signs. As indicated in Supplementary Material 3 (www.
jofem.org), the effect of every single variant on protein sta-
bility was predicted as ΔΔG value, which indicates that these 
mutations are destabilizing the protein.

MAESTRO also predicts the effect of multiple muta-
tions on protein stability. So, the effect of p.Pro947Leu and 
p.Arg1221Cys mutations on IRS1 protein structure was pre-
dicted. Based on the ΔΔG value predicted by this server for 
these two mutations combined, these changes are considered 
destabilizing.

Discussion

The IRS1 gene is located on chromosome 2q36.3, consisting 
of two exons and 9,705 base pairs long. It encodes for the pro-
tein IRS1, which has a molecular mass of 131 kDa with an 
amino acid sequence of 1,242 residues. Insulin receptor (IR), 
a tyrosine kinase receptor, is activated upon insulin binding, 
which results in the autophosphorylation of IR followed by 
tyrosine phosphorylation of IRS1 at multiple sites generating 
binding sites for Src homology 2 (SH2) domain-containing 
proteins, such as PI3K, GRB2/SOS, and SHP2. The recruit-
ment of PI3K to IRS1 regulates insulin-dependent processes, 
including glucose uptake, glycogen synthesis, and promoting 

hepatic gluconeogenic gene transcription [37]. IRS1 has nine 
YXXM motifs serving as putative PI3K binding sites at ty-
rosine positions: 465, 551, 612, 632, 662, 732, 941, 989, and 
1012 [38, 39].

The pathogenicity of the first IRS1 variant, p.Pro948Leu 
was estimated to be possibly damaging (score = 0.707) by 
PolyPhen-2, which is in concordance with our in silico pre-
dictions to be destabilizing. This variant is nearby the PI3K 
binding site hTyr941, located only seven amino acids away. A 
study using 32P labelling and radio-sequencing of phosphopep-
tides proved that the SH2 domain of p58 binds to phosphoryl-
ated mTyr608 and mTyr939 in rat IRS1, corresponding to hu-
man hTyr612 and hTyr941, respectively [40]. In another study, 
different mutant rat IRS1 variants were constructed by site-
directed mutagenesis to evaluate their interaction levels with 
the SH2 domain of PI3K. The construct harboring a deletion 
between 898 and 1146 resulted in only 40% of PI3K activity 
compared to the wild type [41]. In Xenopus laevis oocytes, an 
IRS1 mutant at four tyrosine residues (Y460F, Y608F, Y939F, 
and Y987F) was overexpressed. Insulin-stimulated PI3K ac-
tivity and tyrosine phosphorylation levels of IRS1 were nearly 
undetectable, while oocyte maturation was partially decreased 
[42].

The most extensively studied IRS1 variant - p.Gly972Arg 
(rs1801278) - is located between the two tyrosine phosphoryla-
tion sites and p58 binding sites hTyr941 and hTyr989. Similar-
ly, our variant - p.Pro948Leu - is also between the same sites. 
Different studies have linked the p.Gly972Arg variant with 

Figure 3. Multiple sequence alignment of human IRS1 protein sequence (NP_005535.1) with its mammalian homologs. Black 
arrows indicate residue positions Pro948 and Arg1221.
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higher risks of T2DM, polycystic ovary syndrome, GDM, and 
osteoarthritis [43-46]. Its molecular mechanism was explained 
using a series of recombinant peptide fragments between IRS1 
residues 910 to 1027 containing the polymorphism. The pres-
ence of the polymorphism enhanced the IRS1 association with 
IR, inhibited autophosphorylation of IR and IGF-1R, and re-
duced IRS1 phosphorylation level by 60% [47].

Likewise, the p.Arg1221Cys is located between two ty-
rosine phosphorylation sites that also serve as SHP2 binding 
sites: hTyr1179 (mTyr1172) and hTyr1229 (mTyr1222) [40, 
48]. SHP2 is a member of the protein tyrosine phosphatase 
family encoded by the PTPN11 gene (NCBI Gene ID: 5781). 
It encompasses two SH2 domains, a catalytic phosphatase do-
main and the C-terminus. It is ubiquitously expressed in most 
tissues and is involved in many cellular signaling pathways 
[41]. Upon insulin stimulation and IRS1 association, SHP2 
promotes IR endocytosis and the activation of the MAPK path-
way that controls cell growth and proliferation [49]. Also, it 
differentially regulates the PI3K/AKT pathway by its tyrosine 
phosphatase activity, depending on cell types and upstream re-
ceptor kinases [50].

Mutations in the two tyrosine phosphorylation sites, 
hTyr1179 and hTyr1229, hindered the insulin-induced IRS1/
SHP2 association [36]. Our variant is only two amino acids 
away from the widely conserved serine residues at position 
1223 (mouse Ser1214). Phosphorylation of this serine residue 
weakens the IRS1/SHP2 association yet maintains the insulin-
stimulated IRS1 tyrosine phosphorylation [51].

Both p.Pro948Leu and p.Arg1221Cys variants are glob-
ally rare (MAF are respectively 7.5 × 10-5 and 5.6 × 10-5), and 
they are never described together among the same individual 
(Table 2) even at heterozygote state. Intriguingly, the patient is 
homozygous for both variants’ minor alleles, suggesting their 
high frequencies in the Emirati population. This hypothesis 
has been rejected by analyzing a healthy Emirati cohort.

GDM and T2DM are similar in many aspects, such as their 
pathophysiological mechanisms, including increased insulin 
resistance, impaired insulin secretion, and β-cell impairment. 
Additionally, they share risk factors, such as obesity, age, his-
tory of abnormal glucose tolerance, family history of diabetes, 
and ethnicity [9, 52]. The mentioned risk factors interact with 
the environmental conditions making GDM a multifactorial 
metabolic disease. The genetic nature of GDM remains elu-
sive, but much heritability evidence supports that there is a 
genetic background affecting its predisposition. Women with 
parental or grandparental diabetes tendencies, either maternal 
or paternal, exhibited a higher risk of GDM in many studies 
[53]. Genetic association studies have linked GDM to several 
genes involved in insulin resistance, insulin secretion, MODY, 
lipid and glucose metabolism, and other genes [13].

Given the crucial role of IRS1 in the insulin signaling 
pathway, many studies inspected its contribution to T2DM, 
especially the p.Gly972Arg variant in population-based inves-
tigations [43, 54]. IRS1 has also been investigated for GDM 
pathogenesis. Two meta-analysis studies by Zhang et al and 
Wu et al found the infamous p.Gly972Arg variant associated 
with increased GDM risk [12, 55, 56]. According to the Dis-
GeNET database [57] and our Pubmed search, no other IRS1 
variant was reported to be associated with GDM of different 

ethnicities. Here, despite the unavailability of the mother and 
sisters’ genotypes, we cannot neglect the effect of the two 
identified rare variants to affect insulin-insulin receptor sign-
aling and the appearance of GDM. Considering the patient’s 
family history and her serological and genetic profiles, we ex-
cluded diabetic forms related to the MODY, type I diabetes, 
and LADA. The normal insulin level and high HOMA-IR re-
inforce the IRS-1 variant’s pathogenic effects. Consequently, 
new disease management has been proposed for the patient, 
marked by diet control and exercises with metformin, DPP4 
inhibitors, pioglitazone, and SGL2i administration. Motivated 
by the insulin injection withdrawal and health improvement, 
the patient showed better compliance. Her HbA1c after 6 
months of follow-up was < 7%, and she lost 5 kg of her body 
weight. Her blood pressure was better at 125/75 mm Hg with a 
resting heart rate of 87 bpm.

Genetic studies of multifactorial polygenic diseases such 
as GDM have inherent limitations, especially in a single case 
study where generalizability and small sample size are often 
questioned. However, they also present direct observations 
that can propose new possible risk variants. As stated above, 
the patient’s family members, unfortunately, did not consent 
to give samples to be sequenced. Thus, the co-segregation of 
the identified variants could not be perfectly assessed. The 
initial candidate gene approach was a source of potential bias 
towards the studied loci, which was circumvented by imple-
menting the unbiased approach of CES. All these limitation 
factors should be considered when interpreting the results. In 
addition, a thorough functional investigation of these variants 
at the cellular level could undoubtedly bring more clarification 
regarding their individual and combined influence on protein 
expression, structure, and phosphorylation levels. It is also 
worthwhile to examine the potential downstream effect on the 
insulin receptor signaling pathway or association of IRS1 with 
SH2 domain-containing proteins.

Conclusion

CES and in silico analysis identified two rare IRS1 gene vari-
ants, p.Pro948Leu and p.Arg1221Cys, as possible risk candi-
dates for GDM that require functional validation. Our findings 
suggest that some familial GDM forms could be analyzed as 
monogenic-like traits. The insulin resistance of GDM could 
be treated by lifestyle modifications, including a healthy diet, 
physical activity, losing excess weight, continuing oral antidia-
betic medications, and stopping insulin injections.
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IRS1 protein structure upon the selected mutations.
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