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Abstract

Clinical, neurosurgical and autopsy findings show that type 2 diabetes 
mellitus is caused by progressive ischemia in the anterior hypothala-
mus and endocrine pancreas due to atherosclerosis, and associated 
with insulin resistance. The hypothalamic ischemia provokes neu-
roendocrinological disorders through descending projections, and the 
pancreatic ischemia causes an inappropriate insulin secretion. Both is-
chemic structures can be improved by means of omental implantation 
(omental transplantation or transposition) or with anti-inflammatory 
drugs. Likewise, experimental and clinical observations suggest that 
insulin resistance is caused by inflammatory action of tumor necrosis 
factor alpha and resistin in the insulin receptor. Because, in contrast 
to this, high-dose aspirin or resveratrol can reduce hyperglycemia to 
normal or near normal in diabetic patients. That is, both drugs are 
almost specific for the treatment of insulin resistance. Finally, the use 
of clonazepam at night can have a beneficial effect on glucose ho-
meostasis, because it can reduce the effects of stressful stimuli and 
normalize the sleep disorders or loss.
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Introduction

Clinical and surgical findings have demonstrated that challeng-
ing diseases such as Huntington, Alzheimer, Pick, aging, type 
2 diabetes mellitus (DM), essential hypertension, Parkinson, 
amyotrophic lateral sclerosis (ALS) and olivopontocerebellar 
atrophy (OPCA) are caused by progressive ischemia, due to 
cerebral atherosclerosis, associated to vascular anomalies [1-
8]. Because, in contrast to this, its revascularization by means 
of an omental transplantation (free graft with vascular microa-
nastomoses) can cure or improve these diseases.

Atherosclerosis, a chronic inflammatory disease in the 
inner wall of the arteries [9], is initiated in the fetal life due 
to primary factors (hemodynamic laws) and later on, second-

ary factors (risk factors such as carbon monoxide, cigarette 
smoker, organic solvents and insecticides, among others) of 
sequential appearance in the childhood, adolescence and adult 
life [10, 11]. Likewise with the age, atherosclerotic changes 
progress in form of centrifugal from the aortic arc toward the 
descending aorta, innominate arteries, and its collateral and 
terminal branches [1, 11].

Up to date, almost all researchers consider that the etiol-
ogy of type 2 DM is little known. However, unlike other chal-
lenging diseases [4, 6], I believe that this disease is initiated in 
the anterior hypothalamus by ischemia, and years later, contin-
ued by pancreatic ischemia and insulin resistance [12-14]. The 
vascular impairment in the hypothalamus and pancreas can be 
improved by means of recanalization [15-18] or revasculariza-
tion [2, 13, 14, 19]; meanwhile, the treatment of insulin resist-
ance continues to be a challenge. Thus, in this review article, I 
analyze three key factors involved in the pathogenesis of type 
2 DM, but especially of insulin resistance.

Hypothalamus and Its Dysfunction

A diencephalic structure, the hypothalamus, has a mean height 
of 10.85 mm (range 5 - 16 mm), a mean anteroposterior di-
ameter of 15 mm (range 10 - 23 mm) [20], and weight about 
4 g in the average adult human brain [21]. Therefore, the hy-
pothalamus is rectangular and horseshoe (separated by the III 
ventricle), with anatomical variations in its size, vasculariza-
tion, and afferent and efferent projections. The hypothalamic 
parenchyma is constituted by nuclear groups (about 11 major 
nuclei) intermingled with bands of unmyelinated and myeli-
nated fibers, especially from the medial temporal lobes [22, 
23] and prefrontal limbic areas [5, 24]. Both of them related 
with sleep disorders [25, 26] and stressful impulses on the hy-
pothalamic nuclei [5, 27-32].

Figure 1 represents the hippocampus, which is located in 
the medial temporal lobes and is constituted by dentate gyrus 
and the cornu Ammon with their CA1 to CA4 subdivisions [2, 
13, 33, 34]. The hippocampus receives descending afferents 
from the anterior nuclear complex of the thalamus, entorhinal 
cortex (area 28) and the amygdala (through alveus) [29, 31], 
and ascending afferents from the supramammillary nuclei of 
the hypothalamus, the septum (origin of cholinergic axons), 
raphe nuclei (origin of serotoninergic axons) and locus coer-
uleus (origin of noradrenergic axons) [22, 31, 35]. By contrast, 
the granule neurons of the dentate gyrus send efferent axons 
(mossy fibers) to finish on the apical dendrites of CA3 pyrami-
dal neurons [22, 35, 30]; whereas the pyramidal neurons from 
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the CA3 subdivision send glutamatergic axons through the fim-
bria and fornix to finish in the hypothalamus, and other Schaf-
fer collateral axons through the alveus, and they terminate in 
the CA1 and area 28. However, the greater population of cells 
in the hippocampus is integrated by interneurons (local circuit 
neurons), especially the basket cells with GABAergic function 
on the pyramidal cells [30, 31, 36, 37]. Thus, the hippocampus 
is anatomically connected to parts of the brain that are involved 
with learning, short-term memory, emotional behavior, sleep 
and stress, among other functions [22, 29, 32]. The benzodiaz-
epines (BZ) act on the GABA-BZ receptor complex located on 
the pyramidal neurons of the cornu Ammon [22, 31].

Between 25 and 30 years of age, the cerebral blood flow 
declines progressivelly to mean value of adults (50 - 55 mL/100 
g/min) [3, 33, 38]. Deterioration circulatory coincides with 
the appearance of atherosclerotic plaques in the supraclinoid 
carotids [34-36, 39]. Moreover, these plaques located at the 
mouths of the superior hypophyseal, infundibular and some 
perforating arteries are responsible for progressive ischemia 
in the hypothalamus [3, 5, 40, 41]. Therefore, hypothalamic 
nuclei can suffer different grades of ischemia [4, 5], oxidative 
stress [6, 42, 43] and hypothalamic autophagy [44].

The hypothalamic dysfunction caused by ischemia in the 
anterior and middle portions of the hypothalamus is related 
with the onset of obesity, especially in the preoptic, paraven-
tricular, arcuate, perifornical and ventromedial nuclei [2, 3, 
13, 27, 45-47]. At about 30 years of age, this dysfunction is 
evident and manifested through descending projections [5, 28, 

48] such as the hypothalamic-pituitary-somatotropic (HPS), 
hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary-
gonadal (HPG) and the hypothalamic-autonomic-gastroduode-
nal (HAGD) axes. Therefore, this ischemic process provokes 
excitation (HPA and HAGD axes) and by contrast, deteriora-
tion (HPS and HPG axes) in the nuclei of origin from these 
descending pathways. Thus, the digestions of proteins, lipids 
and carbohydrates are favored, and therefore, the plasma lev-
els of glucose, lipids and insulin are increased. Then, these de-
scending pathways are related, in part, with the overweight and 
obesity [2, 13, 14] and therefore, they provoke the accumula-
tion of fat tissue in the liver, omentum and subcutaneous areas, 
among other regions. However, hyperinsulinemia and insulin 
resistance have been found also in young lean subjects [46, 47].

In summary, hippocampal and hypothalamic dysfunction 
is related with the grade of morphological quality, vascular 
impairment and atherosclerotic changes in the supraclinoid ca-
rotids and its branches. Because, in contrast to this, its revascu-
larization by means of omental tissue can improve the function 
of the medial temporal lobes and residual hypothalamic nuclei 
[2-5, 19, 41].

The Pancreas and Its Dysfunction

The pancreas is a retroperitoneal gland located transversally 
between L1 and L2 lumbar vertebrae. Its head is attached to 
the concavity of the duodenum and the tail, close to the spleen. 

Figure 1. Schematic representation of the hippocampus, showing the ascending projections originating from the septal area 
(SA), locus coeruleus (LC) and raphe nuclei (RN), and the action of the benzodiazepines (BZ) on the pyramidal neurons (PNs). 
DG: dentate gyrus; BC: basket cell; EN: enkephalinergic neuron; Enk: encephalin; OLMC: olm cell; SO: somatostatin; Ach: ace-
tylcholine; NA: noradrenaline; 5HT: serotonin; SP: substance P. Adapted from reference [22]. 



Articles © The authors   |   Journal compilation © J Endocrinol Metab and Elmer Press Inc™   |   www.jofem.org 3

Rafael J Endocrinol Metab. 2016;6(1):1-11

The length of the pancreas is of 20 - 25 cm and weight is be-
tween 100 and 150 g, but beginning at the 40 years of age, this 
gland decreases progressively [49-51].

The exocrine pancreas is constituted by a multitude of ac-
ines (acinar tissue) close one another, which determine lobules 
of 3 - 5 mm each one. The pancreatic secretion produced by the 
exocrine pancreas is drained in the duodenum through the Wir-
sung and Santorini ducts [49-51]. This pancreatic secretion is 
constituted essentially by amylolytic, lipolytic and proteolytic 
enzymes, among other components [50, 51]. Its insufficiency 
occurs only when the 85% or more of the pancreas is damaged 
[14, 50].

The endocrine pancreas is constituted by islets of Langer-
hans distributed all in the pancreas, but mainly in the tail. In 
humans, 1 - 2 millons of islets are present in one pancreas and 
each islet has 2,000 - 3,000 cells arranged in cordons. Each 
islet contains beta cells (70% of total cells) concentrated at the 
center, alpha cells (about 20%) at peripheral of the islets, and 
delta cells (about 5%), G cells (about 1%) and F cells (about 
1%) scattered throughout the islets [10, 50, 52]. The beta cells 
are producing of insulin. Each islet is surrounded by a dense 
vascular network which penetrates less arteries and arterioles 
toward the center [49, 51, 52]. The angio-architecture within 
the islets is very similar to the neuro-vascular relationships in 
the adrenal medulla, substantia nigra and other monoaminer-
gic nuclei [10, 53]. Therefore, the beta cells receive glucose, 
oxygen and other nutrients necessary for the synthesis of pro-
insulin.

The pancreas receives blood supply from three arteries: 
hepatic, splenic and inferior pancreatic (branch of the superior 
mesenteric artery). The two first arteries almost originate from 
the celiac trunk [49, 54-57], but in about 13% of cases, there 
are anatomical variants from its origin of these arteries [54, 56-
59]. In fetus and childhood, the splenic artery is rectilinear, but 
then it becomes tortuous with increase of caliber with the age 
[51, 60]. In its course, this artery emits a series of fine branches 
to the body and tail of the pancreas. Within the pancreatic pa-
renchyma, there are anastomoses with arterial branches from 
the inferior pancreatic artery and in rare cases, from the left 
gastroepiploic artery [59]. In the pancreas, small arteries, arte-
rioles and capillaries surround in form of network to the pan-
creatic acines, as well as to the islets of Langerhans [10, 51, 
52]. That is, normally the islets are highly vascularized.

However, in all people at about 30 years of age and more, 
we found different grades of atherosclerosis in the thoracic and 
abdominal aorta, as well as in its collateral branches [1, 12, 60-
62]. On a postmortem study of 110 aortas in persons between 
28 and 68 years of age, Derrick and colleagues [61] found, in 
44% of cases, variable degrees of stenosis by atherosclerotic 
plaques at the mouths of the celiac trunk, renal and mesenteric 
arteries. Therefore, since 40 years or more, there is progressive 
decrease of the blood flow in the pancreas, kidney, liver, biliary 
system and bowels.

Accordingly, these atherosclerotic plaques located at 
the mouth of the celiac trunk, associated to anatomical vari-
ants from its branches, can provoke progressive ischemia (or 
abrupt) in the islets and a reduction in the synthesis and release 
of insulin [12, 14, 52], especially in people with a population 
of islets within the lower limit of normal, in which the amount 

of insulin secreted is not sufficient to move glucose into the 
cell. Then, the use of oral hypoglycemic should not be indi-
cated in advanced stage of type 2 DM.

On the contrary, clinical evidences suggest that, based on 
the anti-inflammatory, anti-platelet and anti-thrombotic ef-
fects of aspirin [18, 63-69], the hypothalamic and pancreatic 
ischemia can improve by recanalization (increase blood flow 
to the existing arteries). While an omental transposition (pedi-
cled graft) on the pancreas may be useful against pancreatic is-
chemia, due to revascularization (formation of new blood ves-
sels), and besides this, provides stem cells from the omentum 
[14, 70, 71]. I believe that a transplantation of pancreatic islets 
would not be useful without revascularization.

Adipose Tissue and Adipocytokines

There are two types of adipose tissue: brown and white. The 
brown adipose tissue (BAT) in adult persons is scarce and is 
located around the adrenal glands, the kidneys, the aorta, me-
diastinum and neck. The color is due to its rich vasculariza-
tion and presence of intracellular cytochromes. Whereas the 
white adipose tissue (WAT) is abundant and is distributed in 
the liver, omentum, subcutaneous tissue, and in few quantity, 
in mammary glands, ovaries, cardiac area and orbits, among 
other zones [51, 71, 72].

Currently, several studies indicate that WAT is an endo-
crine organ producing numerous proteins with broad biologi-
cal activity [73-79]. The secretory products of WAT, collec-
tively referred to as adipocytokines (usually abbreviated as 
adipokines) include about 50 different proteins as [72, 73, 77, 
78, 80] leptin, tumor necrosis factor-alpha (TNF-alpha), inter-
leukin-6 (IL-6), transforming growth factor beta (TGF-beta), 
plasminogen activator inhibitor-1 (PAI-1), metallothionein, 
adiponectin, resistin, angiotensinogen, adipsin, acylation stim-
ulating protein (ASP), apelin and visfatin, among other prod-
ucts. In general, serum adipokines levels are related with body 
mass index (BMI) and there are differences between the WAT 
of the omentum with the subcutaneous deposits [47, 75]. This 
WAT can transform the testosterone and androstenedione in 
estrone and estradiol [71, 81], among other functions.

Within the adipose tissue, in addition to adipocytes, adi-
pokines can also be produced by other cell types as macrophag-
es and immune cells, forming cells the blood vessels [73, 78, 
80, 82]. Since the obesity is related with type 2 DM, I describe 
the function of three adipocytokines involved with this disease.

Leptin

This product was identified in 1994, a peptide hormone se-
creted principally but no exclusively by adipocytes. Serum 
leptin levels in normal subjects are of 11.5 (6.35 - 20) ng/mL 
and in obese adults, 22 (13.5 - 44) ng/mL, i.e., the serum leptin 
levels are significantly increased in obeses [83]. At the level in 
the arcuate nucleus of the hypothalamus revascularized by the 
omentum [5, 19, 84], leptin exerts an inhibitory action on the 
leptin receptor in the neuropeptide Y (NPY) and Agouti-relat-
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ed protein (AgRP) neurons, and by contrast, proopiomelano-
cortin (POMC) and cocaine amphetamine-regulated transcript 
(CART) neurons are activated by hormone leptin [74, 79, 85]. 
In other words, leptin stimulates the anorexigenic pathway 
and inhibits the orexigenic pathway. Therefore, leptin acts in 
the arcuate nucleus and adjacent areas to reduce body weight 
and fat mass [5, 19]. On the contrary, in presence of athero-
sclerotic plaques at the mouths of the superior hypophyseal, 
infundibular and in some perforating arteries, the circulating 
leptin enters little or nothing in the arcuate nucleus [5, 72] and 
therefore, in obese people, the appetite can continue to be in-
creased by action of orexigenic and ghrelin neural cell of the 
hypothalamus.

TNF-alpha

In 1993, TNF-alpha was identified as a pro-inflammatory adi-

pocytokine involved in the pathogenesis of insulin resistance 
[86, 87]. TNF-alpha is a protein secreted by macrophages/
vascular endothelial cells in the WAT [69, 73-75], as well as 
in other inmune cells with a potent inflammatory effect and 
stimulating the secretion of IL-6, among others [78, 80]. Se-
rum TNF-alpha levels in normal subjects are of 23 (12.5 - 39) 
pg/mL and in obese adults, 42 (13.8 - 97.5) pg/mL, i.e., serum 
TNF-alpha levels are significantly high in obeses [74, 75, 83]. 
However, TNF-alpha levels are also increased in a variety of 
systemic pathologic conditions, including inflammatory dis-
eases such as rheumatoid arthritis, inflammatory bowel disease 
and cardiac disease [78, 83].

TNF-alpha provokes insulin resistance by interfering with 
insulin receptor signaling [73, 86, 87, 88] in organs such as 
liver, muscle and adipose tissue [76, 89]. The targets of TNF-
alpha are varied and include immediate (inhibition of insulin-
induced insulin receptor and insulin receptor substrate-1 (IRS-
1)) phosphorylation [46, 78, 89, 90].

Figure 2. Action of insulin on its receptor and substrates. PM: plasma membrane; JM: juxtamembrane; TK: tyrosine kinase; CT: 
carboxyl-terminal: GLUT4: glucose transporter-4; FATP: fatty acid transporter; IRS: insulin receptor substrate; Gly: glycine; Cyst: 
cysteine; Tyr: tyrosine. 
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Resistin

Human resistin is a cysteine-rich adipocytokine that induces 
low-grade inflammatory by stimulating monocytes [91]. Re-
sistin-mediated chronic inflammation can lead to obesity, ath-
erosclerosis, and other cardiometabolic diseases. That is, hu-
man resistin is an inflammatory protein [92]. Serum resistin 
levels in normal and obese adults are similar [83], but not so, 
in the obese adipose tissue where the resistin is high [74, 75]. 
Thereby, the circulating glucose concentration is not directly 
affected by serum resistin in type 2 DM [93].

The resistin is secreted by macrophages, immune cells, 
mononuclear leukocytes and bone marrow cells [94-96] and it 
interferes with the activation of IRS-1 [77, 95] and/or adeny-
lyl cyclase-associated protein-1 (CAP-1) [91, 96]. Therefore, 
resistin causes insulin resistance by dysfunction in the insulin 
receptor, endothelial cells and smooth muscle. So hyperresist-
inemia contributes to impaired insulin sensitivity in obese sub-
jects. Thereby, resistin is shown as a pro-inflammatory mol-
ecule [74, 92].

In summary, at least three adipocytokines are related with 
obesity and type 2 DM. Leptin acts directly in the arcuate nu-
cleus of the hypothalamus to provoke a desire to stop eating, 
through the action of both orexigenic NPY/AgRP and ano-
rexigenic POMC/CART neurons, and moreover, TNF-alpha, 
resistin and IL-6 interfere with the insulin at grade of its re-
ceptor located in the cellular membrane. That is, these three 
adipokines are, essentially, causes of insulin resistance and by 
contrast, weight loss can reduce this insulin resistance.

Insulin Receptor

The complete insulin receptor is a heterotetrameric membrane 
glycoprotein composed of two alpha and two beta subunits, 
linked together by disulfide bands [97-99]. The two alpha sub-
units (rich in glycine and cystein) and about one-third of the 
beta subunits are extracellulars. The rest of the two beta subu-
nits (rich in tyrosine and some remains of serine/threonine) 
are of transmembrane and intracellular domain [98-101]. The 
insulin-binding domian is located to the N-terminal (glycine 
1-154) of the alpha subunits.

The intracellular region of the beta subunits can be di-
vided into the juxtamembrane (JM), tyrosine kinase (TK) and 
carboxyl-terminal (CT) domains (Fig. 2). The tyrosine in the 
possessions 960 is the site of regulation, and in 972 of anchor-
age and phosphorylation of the IRSs, while the tyrosines in 
1003 to 1030 are essential for ligands to the ATP. Moreover, 
the tyrosines in the possessions 1158 to 1163 are mediators of 
the activity of tyrosine kinase, and finally, the tyrosines 1328 
to 1334 in CT serve to activate other proteins involved in cell 
proliferation [97-102]. The C-terminal region of IRSs proteins 
is poorly conserved [101]. Thus, JM and TK domains possess 
tyrosine phosphorylation sites, enabling them to interact with 
IRSs (intracellular proteins) [98, 100]. The number of recep-
tors varies from 40 for erythrocytes up to 300,000 for adipo-
cytes and hepatocytes [103] and they are located in almost all 
the mammalian cells. But more insulin sensitive cells are in the 

adipocytes, muscle and hepatocytes. So, circulating insulin in 
the bloodstream is captured by alpha subunits (glycine 1-154) 
and both of them form a whole to incorporate the D-glucose 
in the cell of manner indirect through the glucose transporters 
(GLUTs) [104-109] and after this, the insulin receptor can be 
desintegrated or return to the cellular surface [97, 100, 105].

Therefore, the first specific event is the binding of insulin 
to the alpha subunits, which causes a conformational change 
in the alpha subunits and autophosphorylation in the beta 
subunits, i.e., this conformational change enables ATP bind-
ing (tyrosine 1003 - 1030) to the beta subunits intracellular 
domain [102, 103]. The ATP binding activates receptor au-
tophosphorylation, which, in turn, enables the receptor’s ki-
nase activity toward intracellular protein substrates [98]. There 
are numerous autophosphorylation sites in the beta subunits 
[97, 98, 101]. In other words, the conformational change in the 
receptor occurs when insulin is united to specific regions of the 
alpha subunits, and this results in activation of the tyrosine ki-
nase domain [101], to cause the insulin signaling into the cell. 
Thus, a signal cascade activate: 1) translocation of GLUTs to 
the plasma membrane and encourage the influx of D-glucose 
into the cell, 2) the glycogen synthesis, 3) the glycolysis, and 
4) the fatty acid synthesis. Fatty acids enter the cell via vari-
ous fatty acid transporters (FATP-1 to FATP-6) [108, 109]. The 
GLUTs are released from intracellular vesicles and the ATP, 
from mitochondria [107-111].

These IRSs are key mediators in the insulin signaling and 
play a central role in maintaining basic cellular functions such 
as growth, survival, and metabolism [90, 101, 110]. They act 
as docking proteins between the insulin receptor and a com-
plex network of intracellular signaling molecules. Four mem-
bers (IRS-1 to IRS-4) of this family have been identified that 
differ as to tissue distribution. IRS-1 is the primary cytosolic 
substrate of the insullin and insulin-like growth factor-I (IGF-
I) receptors, and both receptors, leading to the activation of 
tyrosine kinase in the beta subunits [98, 101, 112]. TNF-alpha 
decreases the activity of IRSs [88, 99, 100, 106].

The GLUTs are a wide group of membrane proteins [105, 
106] that facilitate the transporter of D-glucose over a plasma 
membrane. These human GLUTs family consist of 14 mem-
bers (GLUT-1 to GLUT-14) of which 11 have been shown to 
catalyze sugar transport [106, 108, 111, 112]. For example, 
GLUT-1 is widely distributed in fetal tissue and in adults, it 
is expressed in erythrocytes and endothelial cells; GLUT-2 is 
distributed in renal tubular cells, hepatocytes and pancreatic 
beta cells; GLUT-3 is in neurons, and GLUT-4 is in adipocytes 
and striated muscle [106, 107]. At the cell surface, GLUT-4 
permits the facilitated diffusion of circulating glucose down its 
concentration gradient into muscle and fat cells. Once within 
cells, a small amount of D-glucose is free, the majority is rap-
idly phosphorylated by glucokinase in the liver and hexokinase 
in other tissues to form D-glucose-6-phosphate (D-glucose 
6-P), where ATP is used as donor of phosphate. So much the 
glucokinase as hexokinase, both of them need the presence of 
a divalentcation (Mg++ or Mn++) to form D-glucose-6-P [101, 
109]. Therefore, this compound is important at the junction 
of several metabolic pathways as glycolysis, glyconeogen-
esis, glycogenesis, glycogenolysis and the pentose phosphate 
pathway. The oxygen is not necessary for glycolysis, and the 
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presence of oxygen can indirectly suppress glycolysis (Pasteur 
effect) [101, 107, 113]. By contrast, mitochondrial dysfunction 
contributes to the development of insulin resistance and may 
be an effective target for the treatment of insulin resistance 
[101, 108, 109].

Accordingly, the insulin receptor is a glycoprotein located 
in the cellular membrane, constituted by two alpha and two 
beta subunits. Once insulin is captured by the alpha subunits, 
the receptor experiences a conformational change, and in the 
final stage, the kinase-mediated signaling cascade stimulates 
release of GLUTs from microvesicles located in the cytoplasm 
[109]. Thus, GLUTs are responsible for removing D-glucose 
from the bloodstream into the cytoplasm [102, 107, 109, 111].

Insulin Resistance and Its Treatment

To date, the mechanisms whereby insulin resistance is pre-
sent in its receptor are still only partially understood. But we 
know that the insulin resistance is a pathological condition 
of the receptor which fails to respond to the normal action of 
the insulin. In other words, the D-glucose does not enter in 
the cell, after the insulin receptor has been attached. A variety 
of disorders, acquired and/or genetic, can be associated with 
the development of insulin resistance and are frequently the 
result of defects in the structure and function of the receptor 

[46, 94, 99, 110], originating from hyperglycemia and hyper-
insulinemia.

Normally the insulin receptor is activated by insulin, IGF-
I (also known as somatomedin C) and IGF-II [98, 109, 112], 
and on the contrary, this action is interfered by TNF-alpha, re-
sistin and IL-6, among the main adipokines [73, 77, 78, 87, 88, 
91, 93, 95]. Because these adipokines (with potent inflamma-
tory effects) can inhibit the action of the receptor by altering 
the IRSs activity [77, 90, 95]. Other hormonal antagonists such 
as cortisol, growth hormone, glucagon and catecholamines are 
each capable of producing states of insulin resistance. There-
fore, anti-inflammatory drugs [64, 65] can reverse or improve 
this dysfunction of receptor caused by the lipotoxicity of the 
adipokines [5, 69, 94, 104], as shown in Figure 3. Then, the 
chronic lipotoxicity of the adipokines in the insulin receptors 
of obese adults can cause the formation of free radicals, oxi-
date stress, degeneration and cell death in many cells of the 
body [4-6, 108]. Type 2 DM in obese children or adolescents, 
in my opinion, is caused essentially by insulin resistance.

Earlier reports indicated that high doses of sodium sa-
licylate dramatically reduced glycosuria in diabetes patients 
[16, 63, 64, 114]. Several years later, other authors [114-116] 
confirmed that high doses (500 mg or more) of aspirin by 2 
- 3 weeks can reduce glycosuria and blood glucose levels in 
diabetic patients, and in addition to reduced insulin require-
ments. For these reasons, posterior studies have suggested that 

Figure 3. The insulin receptor is injured by inflammatory cytokines, which cause insulin resistance. On the contrary, this injury 
can be aborted or improved by loss of body fat and the use of anti-inflammatory drugs. 
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an inflammatory process exists in the pathogenesis of insulin 
resistance [16, 115-117]. Aspirin and sodium salicylate can 
specifically inhibit IkappaB kinase beta (IKKbeta) activity in 
vitro and in vivo by binding to IKKbeta to reduce ATP bind-
ing. On the contrary, the activity of IKKbeta is stimulated by 
TNF-alpha and IL-6 [110, 118]. IKKbeta is a serine/threonine 
protein kinase that phosphorylates the IkappaB protein which 
is an inhibitor of the transcription factor NF-kappaB complex 
[110, 114, 116, 118]. The IKKalpha and IKKbeta are two cata-
lytic subunits of the IKK complex. The inhibition of IKKbeta, 
especially in myeloid cells, may be used to treat insulin resist-
ance [115]. Therefore, this IKKbeta represents a new target 
for treating insulin resistance, because high-dose aspirin can 
reverse the damage to the receptor in obesity and type 2 DM by 
inhibiting IKKbeta activity [16, 115-117, 119, 120].

Basd on the inflammatory effects of TNF-alpha and re-
sistin in the insulin receptor of the cells, clinical evidences 
[121] have shown that we can utilize also resveratrol (trans-
5,3,4-trihydroxystilbene) against insulin resistance. Because 
this agent increases the activity of superoxide dismutase and 
glutathione peroxidase, and decreases the plasma levels of 
TNF-alpha, interferon-gamma, cyclooxygenase-2 (COX-2) 
and pro-inflammatory ILs [122-124]. Especially the plasma 
levels of TNF-alpha show a significant decrease [123, 125] and 
so, resveratrol improves this dysfunction of insulin receptor 
caused by inflammatory adipokines. Some authors [121, 125] 
have shown that 250 - 500 mg/day of resveratrol by 3 months 
is effective and provides a potential adjuvant for the treatment 
of type 2 DM.

Although the mechanism by which the thiazolidinediones 
(TZDs) exert their effect is not full understood [126], these 
TZDs are a class of oral antidiabetic drugs that improve meta-
bolic control in patients with type 2 diabetes, because they can 
reduce insulin resistance in adipose tissue, muscle and the liver 
[104, 126]. Likewise, TZDs can increase glucose utilization 
and decrease glucose production. Moreover, insulin resistance 
induced by TNF-alpha may be partially explained by inhibi-
tion of adiponectin secretion, and the resveratrol can prevent 
this effect of the TNF-alpha. Thus, both of TZDs and the res-
veratrol may increase the insulin sensitivity and decrease glu-
cose in bloodstream.

Finally, clinical evidence suggests that chronic stress and 
sleep disorders or loss may be related with increased fatty ac-
ids levels, which may partly contribute to insulin resistance 
[25, 26], due, probably, to a dysfunction of hypothalamus and 
limbic system caused by ischemia [5, 22, 29]. The clonazepam 
can improve or abort these sleep disorders and slow or dampen 
stressful stimuli [22, 32].

Conclusions

Based on the above mentioned observations and clinicall re-
sults after omental transplantation on the optic chiasma and 
carotid bifurcation into patients with obesity and type 2 DM, I 
believe that this disease is initiated at about 30 years of age, in 
the anterior and middle portions of the hypothalamus, caused 
by progressive (or abrupt) ischemia, and later is added, vascu-

lar impairment in the endocrine pancreas associated to insulin 
resistance.

This pancreatic ischemia caused by atherosclerotic plaques 
located at the mouth of the celiac trunk and its branches may 
be improved through two procedures: first, high-dose aspirin 
to increase the blood flow (recanalization) in the pancreas and 
thus, increase insulin secretion, based on its anti-inflammatory, 
anti-platelet and anti-thrombotic actions [17, 18, 65-68], and 
second, omental transposition (pedicled graft) on the pancreas 
in order to revascularize the islets of Langerhans and provide 
stem cells from the omentum [14, 70, 71]. Through these two 
procedures, we could improve the function of the exocrine and 
endocrine pancreas.

Although to date, there is not any method specific for the 
treatment of insulin resistance, I postulate that this disorder 
may be improved or aborted by means of three therapeutic 
procedures: 1) high-dose aspirin; 2) use of resveratrol; and 3) 
regulation of the stressful stimuli by means of clonazepam. 
A different conclusion to the therapeutic methods is used by 
endocrinologists and internists in the management of patients 
with type 2 DM. However, clinical studies are needed to con-
firm this hypothesis about our therapeutic suggestion against 
insulin resistance.
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